主人公论坛

 找回密码
 立即注册
搜索
查看: 61227|回复: 15
打印 上一主题 下一主题

大循环:生态+人类生命2系统 人类生态共生 光合作用新陈代谢

[复制链接]

6423

主题

4万

帖子

10万

积分

超级版主

Rank: 8Rank: 8

积分
102445
跳转到指定楼层
楼主
发表于 2021-4-27 23:08:40 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
光合作用搜狗科学百科

光合作用通常是指绿色植物(包括光合细菌)利用自身的光合色素吸收光能,经过酶的催化作用,将二氧化碳和水合成有机物并释放氧的过程[1][2]。光合作用是生物界中规模最大的有机物合成过程,每年约有 2x10¹⁸ kcal 的太阳光能转化为化学能(糖类物质),放出的氧气约为 5.35x10¹¹ t,同化的碳素约2x10¹¹  t[1][3]

中文名
光合作用

作用部位
叶绿体

外文名
Photosynthesis

所属领域
植物生理学、生物化学




1 定义
光合作用通常是指绿色植物(包括光合细菌)利用自身的光合色素吸收光能,经过酶的催化作用,将二氧化碳和水合成有机物并释放氧的过程。[1][2]


2 发展


17 世纪荷兰科学家 Van Helmont 进行柳树盆栽试验,证明柳树生长所需的主要物质不是来自土壤,而是来自水。
1771 年被称为光合作用发现年,英国牧师、化学家 J.Priestley 在这年进行密闭钟罩试验,有植物存在蜡烛不熄灭,老鼠不会窒息死亡,并在 1776 年提出植物可以“净化”空气。
1782 年瑞士人 Jean Snebier 用化学方法发现:二氧化碳是光合作用必需物质,是光合作用产物。
1804 年瑞士人 N.T.De Saussure 做定量实验,证实植物所产生的有机物和放出氧气总量比消耗的二氧化碳多,证明还有水参与反应。
1864 年 J.V.Sachs 发现照光叶片遇碘会变蓝,证明光合作用形成碳水化合物(淀粉)。
19 世纪末,证明光合作用原料是空气和土壤中的二氧化碳,能源是太阳辐射能,产物是糖和氧气。
2018 年 6 月,Science 杂志刊登一项研究成果,发现蓝藻可利用近红外光进行光合作用,其机制与之前了解的光合作用不同。[2][4]


3 反应阶段
3.1 光反应

光反应阶段的特征是,在光的驱动下水分子氧化释放电子,通过类似于线粒体呼吸电子传递链那样的电子传递系统传递给电子受体 NADP ,使它还原为 NADPH。电子传递的另一结果是,基质中质子被泵送到类囊体腔中,形成的跨膜质子梯度,驱动 ADP 磷酸化生成 ATP。[1]

3.2 暗反应
暗反应阶段是利用光反应生成的 NADPH 和 ATP 进行碳的同化作用,使二氧化碳还原为糖。由于这个阶段不直接依赖于光,只是依赖于光反应的产物,把它们当反应物,故称为暗反应阶段。[1]

3.3 主要区别

项目
光反应
碳反应(暗反应)
实质
光能→化学能,释放O2
同化CO2形成(CH2O)(酶促反应)
时间
短促,以微秒计
较缓慢
条件
需色素、光、ADP、和酶
不需色素和光,需多种酶
场所
在叶绿体内囊状结构薄膜上进行
在叶绿体基质中进行
物质转化(光反应)
2H2O→4[H]+O2↑(在光和叶绿体中的色素的催化下)
CO2+C5→2C3(在酶的催化下)
物质转化(暗反应)
ADP+Pi→ATP(在酶的催化下)
C3+[H]→(CH2O)+C5(在ATP供能和酶的催化下)
能量转化
叶绿素把光能转化为电能再转化为活跃化学能储存在ATP
ATP活跃的化学能转化为糖类等有机物稳定的化学能



4 色素种类


叶绿体是光合作用的场所,类囊体中含两类色素:叶绿素除叶绿素 a、b 外,还有叶绿素 c、d 和藻胆素,如藻红素和藻蓝素;在光合细菌中是细菌叶绿素。叶绿素 a、b 和细菌叶绿素都由一个与镁络合的卟啉环和一个长链醇组成,它们之间仅有很小的差别。类胡萝卜素是由异戊烯单元组成的四萜,藻胆素是一类色素蛋白,其生色团是由吡咯环组成的链,不含金属,而类色素都具有较多的共轭双键。[5][6]
全部叶绿素和几乎所有的类胡萝卜素都包埋在类囊体膜中,与蛋白质以非共价键结合,一条肽链上可以结合若干色素分子,各色素分子间的距离和取向固定,有利于能量传递。类胡萝卜素与叶黄素能对叶绿素 a、b 起一定的保护作用。几类色素的吸收光谱不同,叶绿素 a、b 吸收红,橙,蓝,紫光,类胡萝卜素吸收蓝紫光,吸收率最低的为绿光。藻红素和藻蓝素的吸收光谱与叶绿素的相差很大,这对于在海洋里生活的藻类适应不同的光质条件有重要的生态意义。[1][6]

5 影响因素
5.1 光合速率
光合速率通常是指一定环境条件下,单位时间、单位叶面积的二氧化碳吸收量,也可用单位时间内氧气的释放量或单位叶面积上的干物质积累量来表示。[2]

5.2 内部因素

  • 叶片发育阶段影响光合速率:新长出的嫩叶,光合速率很低,不同部位的叶片相对光合速率也不同。
  • 叶的结构,如厚度、栅栏组织与海绵组织的比例、叶绿体和类囊体的数目等都对光合速率有影响。
  • 光合产物(如蔗糖)从叶片输出的速率会影响叶片的光合速率。[1][6]


5.3 外部因素

  • 随着光强度的增加,光合速率也会相应提高;当超过一定的光强,光合速率的增加就会转慢,直至饱和不再增加,即达到光饱和点。
  • 光质对光合作用也有影响,太阳辐射中,只有可见光部分才能被光合作用利用,光合作用的作用光谱与叶绿体色素的吸收光谱大体吻合。
  • 二氧化碳是光合作用的原料,对光合速率影响很大。二氧化碳主要通过气孔进入叶片,加强通风或设法增施二氧化碳能显著提高作物的光合速率,直至饱和。
  • 温度也影响光合作用,一方面光合作用的酶受温度的影响,另一方面高温会促使植物关闭气孔,减少水分散失的同时也限制了二氧化碳。
  • 水分亏缺会使光合速率下降,原因在于气孔导度下降、光合产物输出变慢、光合元件受损、光合面积扩展受损等。
  • 矿质营养影响光合作用,它们是叶绿体、叶绿素的组成成分,是电子传递体的重要成分。[1][6]




6 意义
6.1 能量转换
植物在同化无机碳化物的同时,把太阳能转变为化学能,储存在所形成的有机化合物中。光合作用是生物界中规模最大的有机物合成过程,每年约有   kcal 的太阳光能转化为化学能(糖类物质),除了供植物本身和全部异养生物之用外,还可为人类提供营养和能量来源。[1][2]
6.2 无机物变成有机物的重要途径
植物为人类提供了全部的食物和大部分能源,人类所需的粮食、油料、纤维、木材、糖、水果等,无不来自光合作用,没有光合作用,人类就没有食物和各种生活用品。换句话说,没有光合作用就没有人类的生存和发展。[6]

6.3 调节大气
大气之所以能经常保持 21% 的氧含量,主要依赖于光合作用。光合作用为有氧呼吸提供了条件,植物光合作用每年放出的氧气约为   t,同化的碳素约   t。[1][3]



参考文献
  • [1]
    郭蔼光, 范三红. 基础生物化学(第3版).北京:高等教育出版社,2018,
  • [2]
    李合生 主编.《现代植物生理学》(第三版).北京:高等教育出版社,2016,
  • [3]
    骆世明.《农业生态学》(第二版).北京:中国农业出版社,2010,
  • [4]
    科研人员发现新型光合作用.新华社.[2018-06-21]
  • [5]
    王镜岩,朱圣庚,徐长法 主编.《生物化学》(第3版).北京:高等教育出版社,2007,
  • [6]
    陈晓亚,汤章城.《植物生理与分子生物学》(第3版).北京:高等教育出版社,2007,



回复

使用道具 举报

6423

主题

4万

帖子

10万

积分

超级版主

Rank: 8Rank: 8

积分
102445
沙发
 楼主| 发表于 2021-4-27 23:37:56 | 只看该作者

                               
登录/注册后可看大图



                               
登录/注册后可看大图





                               
登录/注册后可看大图



回复 支持 反对

使用道具 举报

6423

主题

4万

帖子

10万

积分

超级版主

Rank: 8Rank: 8

积分
102445
板凳
 楼主| 发表于 2021-4-27 23:42:53 | 只看该作者
有机物与无机物的定义与区别[url=]非标机械论坛[/url] [color=rgba(0, 0, 0, 0.3)]2020-05-09

有机物是什么意思?无机物是什么意思?下面机械设计工程师网以有机物的定义与无机物的定义为基础,来区别有机物与无机物的不同之处。并着重归纳有机物的特点来深入什么是有机物,进而理解什么是无机物。最后再从摘录于网络网友发表的有机物与无机物的区别,深刻的理解有机物与无机物。
1、有机物与无机物的定义(有机物是什么?无机物是什么)
有机物定义:含碳元素的化合物。但是是除碳的氧化物、碳酸(氢)盐及金属碳化物以外的含碳元素的化合物。
无机物定义:一般指组成里不含碳元素的物质。包括单质、碳的氧化物、碳酸(氢)盐及金属碳化物。
2、有机物的特点(即有机物与无机物的区别)
a.多数难溶于水,易溶于有机溶剂;
b.多数受热易分解、易煅烧;
c.多数是分子晶体、熔点低;
d.多数是非电解质、不能导电;
e.有机物参加的反应一般比较复杂,且速率慢、副反应多。
f.有机物种类繁多、发展速度快。
以下是我摘录于网络,可作参考。
有机物即有机化合物。含碳化合物(一氧化碳、二氧化碳、碳酸盐、金属碳化物等少数简单含碳化合物除外)或碳氢化合物及其衍生物的总称。有机物是生命产生的物质基础。
有机物的特点:多数有机化合物主要含有碳、氢两种元素,此外也常含有氧、氮、硫、卤素、磷等。部分有机物来自植物界,但绝大多数是以石油、天然气、煤等作为原料,通过人工合成的方法制得。
和无机物相比,有机物数目众多,可达几百万种。有机化合物的碳原子的结合能力非常强,互相可以结合成碳链或碳环。碳原子数量可以是1、2个,也可以是几千、几万个,许多有机高分子化合物甚至可以有几十万个碳原子。此外,有机化合物中同分异构现象非常普遍,这也是造成有机化合物众多的原因之一。
有机化合物除少数以外,一般都能燃烧。和无机物相比,它们的热稳定性比较差,电解质受热容易分解。有机物的熔点较低,一般不超过400℃。有机物的极性很弱,因此大多不溶于水。有机物之间的反应,大多是分子间反应,往往需要一定的活化能,因此反应缓慢,往往需要催化剂等手段。而且有机物的反应比较复杂,在同样条件下,一个化合物往往可以同时进行几个不同的反应,生成不同的产物。
无机物即无机化合物。一般指碳元素以外各元素的化合物,如水、食盐、硫酸、石灰等。但一些简单的含碳化合物如一氧化碳、二氧化碳、碳酸、碳酸盐和碳化物等,由于它们的组成和性质与无机物相似,因此也作为无机物来研究。绝大多数的无机物可以归入氧化物、酸、碱、盐四大类。
有机物不都是高分子的,比如常见的甲烷苯乙烯就不是。无机物不是都是低分子的,比如分子筛,某些陶瓷就不是,他们都是硅酸盐缩合形成的无机高分子化合物



回复 支持 反对

使用道具 举报

6423

主题

4万

帖子

10万

积分

超级版主

Rank: 8Rank: 8

积分
102445
地板
 楼主| 发表于 2021-4-27 23:44:26 | 只看该作者
电解液搜狗科学百科
电解质是一种在极性溶剂(如水)中溶解时产生导电溶液的物质。溶解的电解质解离成阳离子和阴离子,均匀地分散在溶剂中。从电学上讲,溶液是电中性的。如果向该溶液施加电压,溶液中的阳离子会被吸引到电子富余的电极,而阴离子被吸引到电子缺乏的电极。阴离子和阳离子在溶液中沿相反方向的移动形成电流。电解质包括大多数可溶性盐、酸和碱。一些气体(如氯化氢)在高温或低压条件下也可以作为电解质。一些生物(例如,脱氧核糖核酸、多肽)和合成聚合物(例如,聚苯乙烯磺酸盐)溶解后也能产生电解质溶液,这些含有带电官能团的聚合物被称为“聚电解质”。在溶液中离解成离子的物质具有导电能力。钠、钾、氯、钙、镁和磷酸盐都是电解质。
在医学上,当一个人长时间呕吐或腹泻时,以及剧烈运动后,需要补充电解质。有商品化的电解质溶液,特别是针对患病儿童(如口服补液、苏埃罗口服液或儿科电解质)和运动员(运动饮料)的电解质溶液。电解质监测在厌食症和贪食症的治疗中很重要。


1 语源
电解质一词源于希腊语lytós,意思是“能够解开或松开”。


2 历史

Svante Arrhenius




斯万特·阿伦尼乌斯在1884年的论文中提出了他对固体结晶盐溶解时解离为成对带电粒子这一事实的解释,为此他获得了1903年诺贝尔化学奖。[1][2][3][4]
阿伦尼乌斯的解释是,在形成溶液的过程中,盐分解成带电粒子,多年前迈克尔·法拉第曾将这些带电粒子命名为“离子”。法拉第认为离子是在电解过程中产生的。阿伦尼乌斯则认为即使没有电流,盐溶液中也含有离子。他因此提出溶液中的化学反应实际上是离子之间的反应。[2][3][4]


3 形成
通常,将盐放入溶剂(如水)中可形成电解质溶液,由于溶剂和溶质分子之间的热力学相互作用,单个组分解离,这一过程称为“溶剂化”。例如,当食盐(氯化钠,NaCl)放入水中时,固体食盐溶解成其组分离子,解离反应如下:
NaCl (s) → Na + (aq) + Cl − (aq)
物质也可以通过与水反应产生离子。例如,二氧化碳气体溶解在水中,产生含有水合氢离子、碳酸根离子和碳酸氢根离子的溶液。
熔融盐也可以是电解质,例如,熔融的氯化钠液体是导电的。特别地,离子液体是熔点低于100℃的熔融盐,[5]是一种高导电性的非水电解质,并越来越多的应用在燃料电池和电池中。[6]
当电解质溶液中离子浓度高时称为“浓溶液”,离子浓度低时称为“稀溶液”。强电解质溶质分子在溶液中大部分解离为游离离子,而弱电解质溶质分子在溶液中大部分不解离。可以利用电解质的性质通过电解来提取溶液中所含的元素及其化合物。
碱土金属形成的氢氧化物是强电解质,由于碱土金属离子与氢氧根作用力很强,因此碱土金属氢氧化物在水中溶解度较低。这使它们仅能在不需要高溶解度的情况下应用。[7]


4 生理重要性
生理学上,主要的电解质离子是钠离子(Na+)、钾离子(K+)、钙离子(Ca2+)、镁离子(Mg2+)、氯离子(Cl-)、磷酸氢根离子(HPO42-)和碳酸氢根离子(HCO3−)。正(+)、负(-)电荷符号表示其离子属性,这是化学离解导致的电子不平衡分布的结果。钠离子是细胞外液中的主要电解质,钾离子是细胞内的主要电解质;[8]两者都与液体平衡和血压控制相关。[9]
所有已知的高等生命形式都需要细胞内和细胞外环境之间微妙而复杂的电解质平衡。特别是保持电解质精确的渗透梯度很重要。这种梯度影响和调节身体水合作用以及血液酸碱度,对神经和肌肉功能至关重要。生物物种中存在各种使不同电解质的浓度受到严格控制的机制。
肌肉组织和神经元都被认为是机体的电组织。肌肉和神经元被细胞外液或间质液与细胞内液之间的电解质活动激活。电解质可以通过嵌入在质膜中被称为“离子通道”的特殊蛋白质结构进入或离开细胞膜。例如,肌肉收缩取决于钙、钠和钾的存在。如果这些关键电解质含量不足,可能会导致肌肉无力或严重的肌肉收缩。
电解质平衡是通过口服摄入来维持,并由激素调节,过量的电解质通常由肾脏排出,在紧急情况下可通过静脉注射含电解质的物质来维持电解质平衡。人体的电解质稳态由抗利尿激素、醛固酮和甲状旁腺激素等激素调节。严重的电解质紊乱(如脱水和水中毒)可能导致心脏和神经系统并发症,如果不及时解决会危及生命。
4.1 测量
测量电解质是一种常用的诊断程序,由医学技术人员用离子选择电极对血液或尿液进行分析。测试结果需要结合临床病史和肾功能测试结果一同分析,否则将没有太多意义。最常测量的电解质是钠和钾。除了动脉血气分析外,很少测量氯化物的含量,因为它们与钠的含量有内在联系。比重测试是尿液分析的一项重要测试,以确定是否发生电解质失衡。
4.2 再水化
在口服补液疗法中,含有钠盐和钾盐的电解质饮料可以补充因运动、过量饮酒、发汗(大量出汗)、腹泻、呕吐、中毒或饥饿导致的脱水后体内水和电解质浓度。运动员在极端条件下运动(连续运动三个小时或更长,如马拉松或三项全能)而不摄入电解质会有脱水(或低钠血症)的风险。[10]
将特定比例的水、糖和盐混合可以自制电解质饮料。[11][12]也有商业制剂可供人和兽医使用。
果汁、运动饮料、牛奶、坚果和多数水果和蔬菜(完整或果汁形式,例如土豆、鳄梨)中均含有电解质。


5 电化学
当电极放置在电解液中并施加电压时,电解液将导电。孤立的电子通常不能通过电解质传导;取而代之的是,阴极发生化学反应为电解质提供电子。另一个反应在阳极发生,消耗电解质中的电子。总的结果是阴极周围的电解质形成负电荷云,阳极周围的电解质形成正电荷云。电解质中的离子中和这些电荷,使电子保持流动,反应持续进行。
例如,在食盐(氯化钠,NaCl)的水溶液中,阴极反应将是:
2H2O + 2e− → 2OH− + H2
会产生氢气;阳极反应是:
2NaCl → 2 Na+ + Cl2 + 2e−
会产生氯气。带正电荷的钠离子(Na+)会向阴极反应,中和带负电荷的氢氧根离子,带负电荷的氢氧根离子(OH-)会向阳极反应,中和带正电荷的钠离子。H+和OH-通过水扩散到另一个电极所需时间比普遍的盐离子更长,如果没有电解质中的离子,电极周围的电荷将使持续的电流减小。电解质在水中离解是因为水分子是偶极子,偶极子可以采用能量上有利的方式定向排列将离子溶剂化。
在其他体系中,电极反应可能涉及电极金属以及电解质的离子。
电解导体用于电子设备中,其中金属-电解质界面处的化学反应产生有用的功效。
  • 在电池中,两种具有不同电子亲和力的材料被用作电极;电子从一个电极经过电池外部流向另一个电极,而在电池内部通过电解质离子移动形成电流回路。在电池中,电极反应将化学能转化为电能。[13]
  • 在一些燃料电池中,极板通过固体电解质或质子导体电性连接,同时将燃料氢气和氧气分离开来。[14]
  • 在电镀槽中,电解液在将金属沉积在待镀物体上时,还将该物体电连接到电路中。
  • 在工作小时计量表中,两个薄的水银柱被一个充满电解质的小间隙隔开,当电荷通过该装置时,一侧的金属溶解,另一侧的金属板向外移动,导致可见间隙缓慢移动。
  • 在电解电容器中,化学效应用于产生极薄的电介质或绝缘涂层,而电解质层表现为一个电容器极板。
  • 在一些湿度计中,通过测量近干燥电解质的电导率来测量空气湿度。
  • 热的软化玻璃是一种电解导体,一些玻璃制造商通过让大电流通过来保持玻璃处于熔化状态。


6 固体电解质
固体电解质主要可分为四大类:
  • 凝胶电解质—非常类似液体电解质。本质上,它们是被限制在柔性晶格框架中的液体。经常使用各种添加剂来增加凝胶电解质的导电性。[13][15]
  • 干聚合物电解质—不同于液体和凝胶电解质,盐是直接溶解在固体介质中的。通常是由低晶格能的盐和相对高介电常数的聚合物(环氧乙烷、聚甲基丙烯酸甲酯、聚丙烯腈、聚磷腈、硅氧烷等)组成。常使用复合材料并引入惰性陶瓷相来增加此类电解质的机械强度和导电性。干聚合物电解质分为两大类:陶瓷包聚合物和聚合物包陶瓷。[16][17][18]
  • 固体陶瓷电解质—离子通过晶格中的空位 或空隙在陶瓷相中迁移。同时也有玻璃陶瓷电解质。
  • 有机离子塑晶是一种中间相(即介于液体和固体之间的物质状态)有机盐,其中移动离子是定向或旋转无序的,而其中心位于晶体结构中的有序位置。[14] 基于低于熔点的一种或多种固-固相变,它们具有不同的无序形式,因此它们具有塑性,良好的机械柔韧性,以及良好的电极|电解质界面接触。其中,质子有机离子塑晶(POIPCs )[14]是质子从布朗斯特酸转移到布朗斯特碱而形成的固体质子有机盐,本质上是熔融状态的质子离子液体,有望成为燃料电池的固态质子导体。如1,2,4-三唑
回复 支持 反对

使用道具 举报

6423

主题

4万

帖子

10万

积分

超级版主

Rank: 8Rank: 8

积分
102445
5#
 楼主| 发表于 2021-4-27 23:48:16 | 只看该作者
有机离子塑晶是一种中间相(即介于液体和固体之间的物质状态)有机盐,其中移动离子是定向或旋转无序的,而其中心位于晶体结构中的有序位置。[14] 基于低于熔点的一种或多种固-固相变,它们具有不同的无序形式,因此它们具有塑性,良好的机械柔韧性,以及良好的电极|电解质界面接触。其中,质子有机离子塑晶(POIPCs )[14]是质子从布朗斯特酸转移到布朗斯特碱而形成的固体质子有机盐,本质上是熔融状态的质子离子液体,有望成为燃料电池的固态质子导体。如1,2,4-三唑
回复 支持 反对

使用道具 举报

6423

主题

4万

帖子

10万

积分

超级版主

Rank: 8Rank: 8

积分
102445
6#
 楼主| 发表于 2021-4-28 16:21:14 | 只看该作者
物质不灭定律
编辑词条

物质不灭定律是自然界的基本定律之一,指在任何与周围隔绝的物质系统(孤立系统)中,不论发生何种变化或过程,其总质量保持不变,又称“质量守恒定律”。
物质不灭定律包括物理变化质量守恒、化学反应质量守恒和核反应的质量守恒。


1质量守恒定律简解
2质量守恒定律发现简史
3质量守恒定律的发展
1质量守恒定律简解编辑
     自然界的基本定律之一。在任何与周围隔绝的物质系统(孤立系统)中,不论发生何种变化或过程,其总质量保持不变。18世纪时法国化学家拉瓦锡从实验上推翻了燃素说之后,这一定律始得公认。20世纪初以来,发现高速运动物体的质量随其运动速度而变化,又发现实物和场可以互相转化,因而应按质能关系考虑场的质量。质量概念的发展使质量守恒原理也有了新的发展,质量守恒和能量守恒两条定律通过质能关系合并为一条守恒定律,即质量和能量守恒定律。

  质量守恒定律在19世纪末作了最后一次检验,那时候的精密测量技术已经高度发达。结果表明,在任何化学反应中质量都不会发生变化(哪怕是最微小的)。例如,把糖溶解在水里,则溶液的质量将严格地等于糖的质量和水的质量之和。实验证明,物体的质量具有不变性。不论如何分割或溶解,质量始终不变。在任何化学反应中质量也保持不变。燃烧前炭的质量与燃烧时空气中消耗的氧的质量之和准确地等于燃烧后所生成物质的质量。

  

2质量守恒定律发现简史编辑
  1756年俄国化学家罗蒙诺索夫把锡放在密闭的容器里煅烧,锡发生变化,生成白色的氧化锡,但容器和容器里的物质的总质量,在煅烧前后并没有发生变化。经过反复的实验,都得到同样的结果,于是他认为在化学变化中物质的质量是守恒的。但这一发现当时没有引起科学家的注意,直到1777年法国的拉瓦锡做了同样的实验,也得到同样的结论,这一定律才获得公认。但要确切证明或否定这一结论,都需要极精确的实验结果,而拉瓦锡时代的工具和技术(小于0.2%的质量变化就觉察不出来)不能满足严格的要求。因为这是一个最基本的问题,所以不断有人改进实验技术以求解决。1908年德国化学家朗道耳特(Landolt)及1912年英国化学家曼莱(Manley)做了精确度极高的实验,所用的容器和反应物质量为1 000 g左右,反应前后质量之差小于0.000 1 g,质量的变化小于一千万分之一。这个差别在实验误差范围之内,因此科学家一致承认了这一定律。

  

3质量守恒定律的发展编辑
   自从爱因斯坦(Einstein)提出狭义相对论和质能关系公式(E=mc2)以后,说明物质可以转变为辐射能,辐射能可以转变为物质。这个结论对质量守恒定律在化学中的应用有何影响呢?实验结果证明1 000 g硝化甘油爆炸之后,放出的能量为8.0×106 J。根据质能关系公式计算,产生这些能量的质量是8.9×10-8 g,与原来1 000 g相比,差别小到不能用现在实验技术所能测定。从实用观点来看,可以说在化学反应中,质量守恒定律是完全正确的。

  20世纪以来,人们发现原子核裂变所产生的能量远远超过最剧烈的化学反应。1 000 g 235U裂变的结果,放出的能量为8.23×1016 J,与产生这些辐射能相等的质量为0.914 g,和原来1 000 g相比,质量变化已达到千分之一。于是人们对质量守恒定律就有了新的认识。在20世纪以前,科学家承认两个独立的基本定律:质量守恒定律和能量守恒定律。现在科学家则将这两个定律合而为一,称它为质能守恒定律。

  1756年俄国M.V.罗蒙诺索夫首先测定化学反应中物质的重量关系,将锡放在密闭容器中燃烧,反应前后重量没有变化,由此得出结论:“参加反应的全部物质的重量,常等于全部反应产物的重量。”1774年法国A.-L.拉瓦锡重复类似的实验,并得出同样的结论。

  由于罗蒙诺索夫和拉瓦锡时代所用的天平不够精密,所以后来又有不少科学家用更精确的方法证明这一定律。例如19世纪中叶,比利时分析化学家J.-S.斯塔用银和碘制备碘化银,所得碘化银的质量与碘和银的总质量只相差0.002%。19世纪末,H.H.兰多尔特用很精密的天平再一次证明这一定律的正确性。

  20世纪,A.爱因斯坦发现了狭义相对论,他指出,物质的质量和它的能量成正比,可用以下公式表示:E=mc2式中E为能量;m为质量;c为光速。以上公式说明物质可以转变为辐射能,辐射能也可以转变为物质。这一现象并不意味着物质会被消灭,而是物质的静质量转变成另外一种运动形式。所以20世纪以后,这一定律已经发展成为质量守恒定律和能量守恒定律,合称质能守恒定律。
回复 支持 反对

使用道具 举报

6423

主题

4万

帖子

10万

积分

超级版主

Rank: 8Rank: 8

积分
102445
7#
 楼主| 发表于 2021-4-28 22:07:01 | 只看该作者
新陈代谢[size=1em]编辑词条




新陈代谢是生物体内全部有序化学变化的总称,其中的化学变化一般都是在酶的催化作用下进行的。它包括物质代谢和能量代谢两个方面。生物体与外界环境之间的物质和能量交换以及生物体内物质和能量的转变过程叫做新陈代谢。[1]






中文名称
新陈代谢

生物释义
不断以新物质替换旧物质的过程

外文名称
metabolism

文化释义
比喻新的事物发展并更替旧事物












1
定义
[size=1em]编辑

新陈代谢是生物体内全部有序化学变化的总称,其中的化学变化一般都是在酶的催化作用下进行的。

性质上分成物质代谢和能量代谢:

物质代谢:是指生物体与外界环境之间物质的交换和生物体内物质的转变过程。

可细分为:

从外界摄取营养物质并转变为自身物质。(同化作用

新陈代谢--解析图自身的部分物质被氧化分解并排出代谢废物。(异化作用

能量代谢:是指生物体与外界环境之间能量的交换和生物体内能量的转变过程。

可细分为:

储存能量(同化作用)

释放能量(异化作用)

方向上:分成同化作用和异化作用:

同化作用:(又叫做合成代谢)是指生物体把从外界环境中获取的营养物质转变成自身的组成物质,并且储存能量的变化过程。

异化作用:(又叫做分解代谢)是指生物体能够把自身的一部分组成物质加以分解,释放出其中的能量,并且把分解的终产物排出体外的变化过程。

新陈代谢中的同化作用、异化作用、物质代谢和能量代谢之间的关系,可以用右面的表解来概括。



2
简介
[size=1em]编辑

新陈代谢是指生物体能不断地与外界进行物质和能量的交换,同时生物体内也不断进行着物质和能量的转变过程,其实质就是生物体能不断进行自我更新。新陈代谢是生命体最主要的生命活动形式,如果新陈代谢停止了,生命也就结束了。新陈代谢包括物质代谢和能量代谢两个方面。其中,物质代谢是指生物体与外界环境之间物质的交换和生物体内物质的转变过程:能量代谢是指生物体与外界环境之间能量的交换和生物体内能量的转变过程新陈代谢过程中既有同化作用,又有异化作用。同化作用又称合成代谢,是指生物体把从外界环境中获取的营养物质转变成自身的组成物质,并且储存能量的变化过程。异化作用又称分解代谢,是指生物体把自身的一部分组成物质加以分解,释放出其中的能量并且把分解的终产物排出体外的变化过程。



3
功能
[size=1em]编辑

1、从周围环境中获得营养物质;

2、将外界引入的营养物质转变为自身需要的结构元件,即大分子的组成前体;

3、将结构元件装配成自身的大分子,例如蛋白质、核酸、脂质等;

4、分解有机营养物质;

5、提供生命活动所需的一切能量。



4
基本类型
[size=1em]编辑



同化作用

根据生物体在同化作用过程中能不能利用无机物制造有机物,新陈代谢可以分为自养型异养型和兼性营养型三种。

自养型

绿色植物直接从外界环境摄取无机物,通过光合作用,将无机物制造成复杂的有机物,并且储存能量,来维持自身生命活动的进行,这样的新陈代谢类型属于自养型。少数种类的细菌,不能够进行光合作用,而能够利用体外环境中的某些有机物氧化时所释放出的能量来制造有机物,并且依靠这些有机物氧化分解时所释放出的能量来维持自身的生命活动,这种合成作用叫做化能合成作用。例如,硝化细菌能够将土壤中的氨(NH3)转化成亚硝酸(HNO2)和硝酸(HNO3),并且利用这个氧化过程所释放出的能量来合成有机物。总之,生物体在同化作用的过程中,能够把从外界环境中摄取的无机物转变成为自身的组成物质,并且储存能量,这种新陈代谢类型叫做自养型。

异养型

人和动物不能像绿色植物那样进行光合作用,也不能像硝化细菌那样进行化能合成作用,它们只能依靠摄取外界环境中现成的有机物来维持自身的生命活动,这样的新陈代谢类型属于异养型。此外,营腐生或寄生生活的真菌、大多数种类的细菌,它们的新陈代谢类型也属于异养型。总之,生物体在同化作用的过程中,把从外界环境中摄取的现成的有机物转变成为自身的组成物质,并且储存能量,这种新陈代谢类型叫做异养型。

兼性营养型

有些生物(如红螺菌)在没有有机物的条件下能够利用光能固定二氧化碳并以此合成有机物,从而满足自己的生长发育需要;在有现成的有机物的时候这些生物就会利用现成的有机物来满足自己的生长发育的需要。




异化作用

根据生物体在异化作用过程中对氧的需求情况,新陈代谢的基本类型可以分为需氧型、厌氧型和兼性厌氧型三种。

需氧型

绝大多数的动物和植物都需要生活在氧充足的环境中。它们在异化作用的过程中,必须不断地从外界环境中摄取氧来氧化分解体内的有机物,释放出其中的能量,以便维持自身各项生命活动的进行。这种新陈代谢类型叫做需氧型,也叫做有氧呼吸型。

厌氧型

这一类型的生物有乳酸菌和寄生在动物体内的寄生虫等少数动物,它们在缺氧的条件下,仍能够将体内的有机物氧化,从中获得维持自身生命活动所需要的能量。这种新陈代谢类型叫做厌氧型,也叫做无氧呼吸型。

兼性厌氧型

新陈代谢--多喝矿泉水这一类生物在氧气充足的条件下进行有氧呼吸,把有机物彻底的分解为二氧化碳和水,在缺氧的条件下把有机物不彻底的分解为乳酸或者酒精和二氧化碳。典型的兼性厌氧型生物就是酵母菌

酵母菌是单细胞真菌,通常分布在含糖量较高和偏酸性的环境中,如蔬菜、水果的表面和菜园、果园的土壤中。酵母菌是兼性厌氧微生物,在有氧的条件下,将糖类物质分解成二氧化碳和水;在缺氧的条件下,将糖类物质分解成二氧化碳和酒精。酵母菌在生产中的应用十分广泛,除了熟知的酿酒、发面外,还能用于生产有机酸、提取多种酶等。




5
代谢分泌
[size=1em]编辑

内分泌通过激素调节新陈代谢,进而稳定生命体。而新陈代谢又将生命体与外界环境的情况通过神经系统传达到内分泌系统,内分泌做出调整使生命体更好的适应环境。



6
同化异化
[size=1em]编辑

绿茶促使新陈代谢任何活着的生物都必须不断地吃进东西,不断地积累能量;还必须不断地排泄废物,不断地消耗能量。这种生物体内同外界不断进行的物质和能量交换的过程,就是新陈代谢。新陈代谢是生命现象的最基本特征,它由两个相反而又同一的过程组成,一个是同化作用过程,另一个是异化作用的过程。

人和动物吃了外界的物质(食物)以后,通过消化、吸收,把可利用的物质转化、合成自身的物质;同时把食物转化过程中释放出的能量储存起来,这就是同化作用。绿色植物利用光合作用,把从外界吸收进来的水和二氧化碳等物质转化成淀粉、纤维素等物质,并把能量储存起来,也是同化作用。异化作用是在同化作用进行的同时,生物体自身的物质不断地分解变化,并把储存的能量释放出去,供生命活动使用,同时把不需要和不能利用的物质排出体外。

新陈代谢各种生物的新陈代谢。在生长、发育和衰老阶段是不同的。幼婴儿、青少年正在长身体的过程中,需要更多的物质来建造自身的机体,因此新陈代谢旺盛,同化作用占主导位置。到了老年、晚年,人体机能日趋退化,新陈代谢就逐渐缓慢,同化作用与异化作用的主次关系也随之转化。

动物冬眠时,虽然不吃不喝,但是新陈代谢并未停止,只不过变得非常缓慢。

新陈代谢是生命体不断进行自我更新的过程,如果新陈代谢停止了,生命也就结束了。

-----------------

生物合成[size=1em]编辑词条


为生物体内进行的同化反应的总称。





中文名
生物合成

总 称
生物体内进行的同化反应

外文名
biosynthesis

能量供给
ATP,GTP












1
基本内容
[size=1em]编辑

生物合成 biosynthesis

  生物体内进行的同化反应的总称。生物合成具有如下几种不同的生理意义。(1)合成生长增值所必需的物质。(2)在稳定状态时,合成用于补充消耗掉的成分的物质。(3)为长期和短期的贮藏,进行必要的合成。一般来说,生物合成是吸能反应,多数是朝向使分子结构复杂化的方向进行。能量供给最典型的是由ATP供给,也有通过GTP(例如:蛋白质合成,)UTP(糖合成),CTP(磷脂的合成)供给的。也有利用还原型辅酶的(脂肪链的延长)。生物合成可分为由主要原料进行的全合成(从头合成,例如光合作用)和由部分分解产物进行可逆性的废物利用途径(例如:嘌呤核苷酸的转换。生物体内的各种生物合成途径互相间受到复杂的控制。生物合成可分为由主要原料进行的全合成(从头合成,例如光合作用)和由部分分解产物进行可逆性的废物利用途径(例如:嘌呤核苷酸的转换。生物体内的各种生物合成途径互相间受到复杂的控制












回复 支持 反对

使用道具 举报

6423

主题

4万

帖子

10万

积分

超级版主

Rank: 8Rank: 8

积分
102445
8#
 楼主| 发表于 2021-4-28 22:18:55 | 只看该作者
正反馈[size=1em]编辑词条



正反馈是指受控部分发出反馈信息,其方向与控制信息一致,可以促进或加强控制部分等活动。





外文名
Suspendisse

拼 音
zhèngfǎn kuì

注 音
ㄓㄥˋㄈㄢˇ ㄎㄨㄟˋ

中文名
正反馈












1
名词解释
[size=1em]编辑

生理中,正反馈的意义在于使生理过程不断加强,直至最终完成生理功能,在正反馈情况下,反馈控制系统处于再生状态。

体内常见的正反馈现象:排便,排尿,分娩,凝血,射精等。

【新闻传播学】 在传播活动中,反馈是指受传者对传播者发来的讯息的反应。新闻传播的信息主体是社会性信息,从社会性信息的角度来看。传播过程中,有正反馈和负反馈之分。经过反馈,使给定信息偏离目标值的为正反馈。正反馈是传播者的给定信息与真实信息的差异倾向性加剧系统正在进行的偏离目标的活动,这种偏离活动的发生与加剧,会使传播目的与社会大系统产生越来越大的距离,不断使给定信息接近真实信息,是传播者争取有效传播的关键。正反馈可以使系统由旧稳态发展成新稳态。



2
相关其他
[size=1em]编辑

正反馈是经典控制论中的术语。是指扩大对系统的干扰,导致系统失稳。典型的正反馈的例子如:多年前,美国有人设计了一个别出心裁的游戏。他安排了一串多米诺骨牌,其中每一块是前一块的1.5倍。只要第一块多米诺骨牌倒翻,它马上撞击比它大的骨牌使其相继倒塌。他证明,只要按这种程序排列32块多米诺骨牌,最后一块将如纽约世界贸易中心的一座摩天大楼那么大。前一块多米诺骨牌的倒塌是对后一块骨牌的干扰,多米诺骨牌的机制是干扰的传递,当这种传递逐级放大时,就产生了干扰的放大,这就是正反馈机制了。

在生产、生活中,正反馈的例子虽然没有负反馈多,但却也是常见的。一般所谓“恶性循环”导致系统的破坏,大都是由于正反馈的作用。

----------------

阈值[size=1em]编辑词条





阈值是指一个效应能够产生的最低值或最高值。包括PS阈值,AE阈值,绝对阈值。

此一名词广泛用于各方面,包括建筑学、生物学、飞行、化学、电信、电学、心理学等,如生态阈值。






中文名
阈(yù)值

适用范围
数理科学

解释
范围控制

外文名
threshold value

又名
临界值












1
概念定义
[size=1em]编辑

阈yù 范围,边界,程度。1) 门槛、门限,引申为边界、界阈、视阈。

阈值跟英文threshold value对应。



2
分类介绍
[size=1em]编辑




PS阈值

在PS中的阈值,实际上是基于图片亮度的一个黑白分界值,默认值是50%中性灰,即128,亮度高于128(<50%的灰)的会变白,低于128(>50%的灰)的会变黑(可以跟滤镜中的其它――高反差保留,再用阈值效果会更好)。




AE阈值

阈值阈值可以理解为值域,即是因变量的取值范围,在after effects中,比如图层的透明图阈值为0-100。当输入信号低于门限时,增益就会按一定的压缩比例放大或缩小。




绝对阈值

刺激物只有达到一定强度才能引起人的感觉。这种刚刚能引起感觉的最小刺激量,叫绝对感觉阈值(absolute sensory threshold)。[1]




3
应用邻域
[size=1em]编辑

一个领域或一个系统的界限称为阈,其数值称为阈值。在各门科学领域中均有阈值。



数学

数学中y=f(x)函数关系,自变量x值必须在函数的定义域内,因变量y=才能有确定的值。这个函数的定义域就是x的阈值。




化工系统工程

在化工系统工程中用阈值来计算最优化问题。人为主观地制定一个决策往往是不合理的,随意确定一个决策值亦往往不能求得最优值。因此计算时要对独立变量取值范围赋予一定的数学限制,所有满足这些限制(阈值)的点构成最优化问题的可行域




自动控制系统

自动控制系统中能产生一个校正动作的最小输入值称为阈值。




生物科学

刺激引起应激组织反应的最低值。为临界值的意思,也就是刺激生体系等时,虽然对小刺激不反应,但当超过某限度时就会激烈反应的这种界限值。




Photoshop

图形电脑软件photoshop中的解释:“阈值”命令将灰度或彩色图像转换为高对比度的黑白图像。可以指定某个色阶作为阈值。所有比阈值亮的像素转换为白色;而所有比阈值暗的像素转换为黑色。“阈值”命令对确定图像的最亮和最暗区域很有用。

PhotoShop中的阈值阈值就是临界值,在PS中的阈值,实际上是基于图片亮度的一个黑白分界值,默认值是50%中性灰,即128,亮度高于128(50%的灰)的即会变黑.可以跟滤镜中的其它――高反差保留,再用阈值效果会更好.




地震工程

地震工程中,强震持续时间可定义为超过一定加速度阈值(一般为0.05g)的第一个峰点和最后一个峰点之间的时间段。[2]







参考资料:
1.

2.










回复 支持 反对

使用道具 举报

6423

主题

4万

帖子

10万

积分

超级版主

Rank: 8Rank: 8

积分
102445
9#
 楼主| 发表于 2021-6-3 01:13:17 | 只看该作者
李比希[size=1em]编辑词条




尤斯图斯·冯· 李比希 ,男爵(Justus von Liebig,1803年5月12日出生于德国达姆施塔特,1873年4月18日逝世于德国慕尼黑)是一位德国化学家,他最重要的贡献在于农业和生物化学,他创立了有机化学。因此被称为“有机化学之父”。作为大学教授,他发明了现代面向实验室的教学方法,因为这一创新,他被誉为历史上最伟大的化学教育家之一。他发现了氮对于植物营养的重要性,因此也被称为“肥料工业之父”。




快速导航


出生地
德国达姆施塔特

中文名称
尤斯图斯·冯· 李比希

性别


毕业院校
德国埃尔兰根大学

逝世日期
1873年4月18日

外文名称
Justus von Liebig

国籍
德国

主要成就
创立了有机化学、现代面向实验室的教学方法

职业
化学家

出生日期
1803年5月12日












1
人物简介
[size=1em]编辑

李比希德国著名的化学家、化学教育家李比希1803年5月12日生于德国达姆斯塔特(Darnistadt)一个经营药物、染料及化学试剂的小商人家庭。儿童时代,李比希随父亲制造过家庭药物和涂料,后来又当过药剂师的徒弟。少年时代的李比希对当时德国学校正规化、公式化一套的陈旧教育感到乏味,但却酷爱阅读化学书籍和动手做化学试验。

李比希1820年在波恩大学学习,上了大学他来到了波恩,进入埃尔兰根大学并于1822年取得博士学位。当时中欧处于反动时期,李比希由于持有自由派的观点并积极参与政治活动而被通缉。他不得不离开波恩到了巴黎,在那里得到德国科学界泰斗洪堡的帮助和推荐到盖吕萨克的实验室工作。1824年完成了一系列雷酸化合物的研究。此时韦勒正在研究氰化物。他们分别写的文章同时在盖吕萨克主编的杂志上发表,盖吕萨克指出这两类不同的化合物具有相同的分子式。这是化学家首次发现不同化合物具有同样的分子式,从此诞生了“同分异构体”这个名词。同时也以此为契机与韦勒成为终生不渝的密友。从这一年开始他在一个叫吉森的小城的大学里教书,开创性地建立了学生普通实验室。李比希以极大的热情投入了有机化学。

1873年4月18日卒于慕尼黑。



2
转学
[size=1em]编辑

李比希1822年获哲学博士学位。同年到巴黎,常听J.-L. 盖-吕萨克和P.-L.杜隆等化学家的讲演。不久就在盖-吕萨克的实验室中工作。1824年回到德国,任吉森大学化学教授,创立了吉森实验室。1852年李比希任慕尼黑大学教授。1840年当选为英国皇家学会会员。1842年荣誉当选为法国科学院院士。



3
贡献
[size=1em]编辑

李比希之墓他作过大量的有机化合物的准确分析,改进了有机分析的若干方法,定出大批化合物的化学式,发现了同分异构现象。他在化学上的重要贡献还有:1829年发现并分析马尿酸;1831年发现并制得氯仿和氯醛;1832年与F.维勒共同发现安息香基并提出基团理论,为有机结构理论的发展作出贡献;1839年提出多元酸理论。1840年以后的30年里,他转而研究生物化学和农业化学。他用实验方法证明:植物生长需要碳酸、氨、氧化镁、磷、硝酸以及钾、钠和铁的化合物等无机物;人和动物的排泄物只有转变为碳酸、氨和硝酸等才能被植物吸收。这些观点是近代农业化学的基础。他大力提倡用无机肥料来提高收成。他还认为动物的食物不但需要一定的数量,还需要各种不同的种类,或有机物或无机物,而且须有相当的比例。他又证明糖类可生成脂肪。还提出发酵作用的原理。李比希一生共发表了318篇化学和其他科学的论文。著有《有机物分析》、《生物化学》、《化学通信》、《化学研究》、《农业化学基础》、《关于近世农业之科学信件》等。他还和维勒合编了《纯粹与应用化学词典》。1831年创办《药物杂志》并任编辑,1840年后此杂志改名为《化学和药物杂志》,他和维勒同任编辑。

李比希当时有机物的分析技术还相当落后,他改进并完善了由盖吕萨克和泰纳尔提出的有机物燃烧分析法,使之根据产生的二氧化碳和水的量能够精确的确定碳和氢的含量。后来杜马又发明测定有机氮的好方法,这样就形成了完整的有机分析体系。吉森这个小地方也成为当时世界的化学中心,对19世纪德国成为化学强国起着重要作用。1845年他被封为男爵,1852年后因健康恶化而退出教学工作,但仍然从事力所能及的研究工作。并开始对生物化学产生了兴趣,对生命的活力是由体内食物氧化产生的能量提供的观点之建立起了积极作用。然而对发酵过程的理解却和贝采利乌斯犯了同样的错误。在对农业化学方面,他也是成功和失败并存。首先他正确地指出:土地肥力丧失的主要原因是,植物消耗了土壤里的生命所必需的矿物成分,诸如钠、钙、磷等。他还是第一个主张用化肥代替天然肥料进行施肥的人。不过,他错误的认为植物所必需的氮是从大气中直接吸收的,所以在他的化肥配料表中没有加入氮化物。这一点后来被纠正了,从而使农业生产发生了巨大的飞跃。

李比希从巴黎回国担任了吉森大学的化学教授,立即着手实施一项前所未闻的计划,那就是改革德国的传统化学教育体制与教学方式,探索造就新一代化学家的方法。当时德国大学中的化学教育,通常是把化学知识混杂在自然哲学中讲授,而且没有专门的化学教学实验室,学生得不到实验操作的训练。李比希深知,作为一个真正的化学家仅有哲学思辨是不够的,化学知识只有从实验中获得。而这种实验训练在那时的德国大学中还得不到。于是李比希下决心借鉴国外化学实验室的经验,在吉森建立一个现代化的实验室,让一批又一批的青年人在那里得到训练,从中培养出一代化学家。吉森实验室是一座供化学教学使用的实验室,它向全体学生开放,并在化学实验过程的同时进行讲授。

李比希为实验室教学编制了一个全新的教学大纲,它规定:开始,学生在学习讲义的同时还要做实验,先使用已知化合物进行定性分析和定量分析,然后从天然物质中提纯和鉴定新化合物以及进行无机合成和有机合成;学完这一课程后,在导师指导下进行独立的研究作为毕业论文项目;最后通过鉴定获得博士学位。李比希这种让学生在实验室中从系统训练逐步转入独立研究的教学体制,在他之前并未被人们认识到,而它为近代化学教育体制奠定了基础。



4
教授生涯
[size=1em]编辑

李比希

教授化学是要教授作为科学的化学,而决不是单纯地传授应用技术。对于只是抱着学习应用技术目的而来的学生,他是断然拒绝的;但对为了造福于人类而学习化学知识的学生,则始终是支持的。李比希本人就是这样的表率。他认为这个问题不能本末倒置。他谆谆告诫学生们,应当首先为祖国和追求真理而努力,然后其余的东西才归属于自己。



5
机构创建
[size=1em]编辑

化学教学大纲的编制和李比希热诚而严谨的治学,使得化学教育运动在德国比在其他任何地方以更大的势头和更深远的影响发展起来,从而吸引着四面八方的学生拥向吉森大学,聚集于李比希门下。在李比希的精心指导下,通过实验室中的系统训练培养出了一大批闻名于世的化学家。其中名列前茅的有为染料化学和染料工业奠定基础的霍夫曼、发现卤代烷金属钠作用制备烃的武慈、提出苯环状结构学说为有机结构理论奠定坚实基础而被誉为“化学建筑师”的凯库勒,以及被门捷列夫誉为“俄国化学家之父”的沃斯克列先斯基等。值得指出的是这些学生还在本国仿效吉森的做法,建立了一批面向学生的教学实验室,使吉森的化学教育模式在全世界得到积极推广,培养出众多著名的化学家,并形成了吉森一李比希学派,为世界化学发展作出了巨大贡献。



6
化学大师
[size=1em]编辑

1803年5月12日,李比希生于德国的达姆斯塔特(Darnistadt)。父亲是一个染料制造商,家中有许多化学药品。小小的李比希经常自己动手做化学实验,他对实验和观察有着浓厚的兴趣。他把父亲店铺后边的厨房改造成自己的实验室,在阁楼上,自己偷偷做雷酸汞盐的实验。有一次他在做雷酸汞的实验时。引起了爆炸,震动了整个楼房,屋顶的一角也被炸毁了,但他本人没有受伤。对于这件事,李比希的父亲并没有责备他,反而说他有胆量、有追求精神。每当李比希回忆往事时,他都深有感触他说:童年的化学实验,激发了他的想象力和对化学的热爱。



7
青年时代
[size=1em]编辑

不远千里到波恩求学,他的第一个老师是卡斯特纳。后来,李比希又转到埃尔兰根大学学习,并于1822年获博士学位,博士论文的题目是《论雷酸汞的成分》。获博士学位以后,他又到法国巴黎继续深造。经洪堡(A。 Von Htmboldt,1769一1859)教授推荐,他进入了盖·吕萨克实验室进行研究工作。在1822一1824两年的研究中,在探索各种有机化合物的同时,他系统地研究了雷酸盐。找到了防止雷酸盐爆炸的填充剂,发现用烘焙过的苦土(MgO)与雷酸盐相混和,可以非常有效地防止雷酸盐爆炸。李比希在1823年6月23日向科学院报告了他的研究成果。当时,会议主持人洪堡特教授对李比希说:“您的研究不仅本身具有重要意义,更重要的是这一成果使人们感到,您是一位有杰出才干的人。”



8
回到德国
[size=1em]编辑



前期

担任了吉森(Giessen)大学编外教授,两年以后升为正式教授,当时他年仅22岁。

李比希在化学上建树极多,除雷酸盐的研究成果之外, 1829年发现了马尿酸,18N年合成了氯醛和氯仿,1832年和维勒鉴定苯乙酰基:1834年提出乙醇、乙醚等,都可视为乙基的化合物,并命名了乙基(C2H5一)。




后期

李比希和法国化学家杜马合作,在1837年10月23日呈送法国科学院的论文中指出:“无机化学中的‘基’是简单的多有机化学中的‘基’是化合物,这是二者的不同点。但是,在无机化学和有机化学中,化学的规律是一样的。”1838年,李比希还给“基”下了如下的定义。

1.有机化学中的“基”是一系列化合物中不变的部分。

2.“基”在化合物中,可被元素置换。

3.置换“基”的元素,可以被其他元素所取代。




9
想法
[size=1em]编辑

一个原子团满足以上三个条件中的两条就可以称为“基”。从此,有机化学中“基”的概念就确定了。

1837年,李比希还提出了有关多元酸的理论,开展了对有机酸的研究,说明了酸和氢的内在联系。1839年,李比希研究了“发酵”和“腐败”问题,对“发酵”和“腐败”做了理论说明。同时,他还研究了尿酸的衍生物、生物碱、氨基酸、胱胺、肌酸等多种有机化合物的结构和性质。

李比希对化学教学一贯尽心竭力,自1824年回国后,他发现德国的化学教育落后于法国,许多德国大学没有化学教授,化学课由医学博士讲授。化学实验教学的条件就更差了,全国只有汤姆逊设立的一处实验室,一些著名化学家的实验室,都是私人性质的。只能接受一两名学生做专题研究。为了改变这种情况,李比希加强了对实验室建设和化学教学法的研究,使化学教学真正具备了实验科学的特色。他的努力得到了校方和国家的支持,经过两年努力,他在吉森大学建立了一个完善的实验教学系统,他的实验室可以同时容纳22名学生做实验,教室可以供120人听讲,讲台的两侧有各种实验设备和仪器,可以方便地为听讲人做各种演示实验。



10
荣誉
[size=1em]编辑

1860年被选为巴伐利亚科学院院长,还曾被选为德国。法国、英国、俄国、瑞典等国家科学院的院士或名誉院士。

1873年4月18日,李比希患感冒逝于德国的慕尼黑。李比希作为科学巨人,名震欧洲。但是,科学真理是无情的,他不屈从于权力,也不依附名家的威望,他只偏爱实事求是的人。

在著名化学家巴拉尔发现元素溴的前四年,李比希曾试着把海藻烧成灰,用热水浸泡,再往里面通氯气。他发现,在残渣底部沉淀着一种棕红色的液体。他反复做了几次实验,都得到同样的结果。如果继续下去,以当时李比希的实验设备和实验技术,完全有条件从这瓶液体中发现新元素溴。但是,李比希根本就没有做认真的化学分析,只是想,这些东西是通了氯气得到的,说明海藻中的碘和氯起了化学反应,生成了氯化碘。于是他在瓶子上贴了一个标签,上面写着“氯化碘”,然后就把这瓶液体放在柜子里,一放就是四年。1826年8月14日,法国化学家波拉德宣布,发现了新元素溴这种元素性质介于氯和碘之间,这一发现,震惊了化学界。李比希看到了波拉德的报告以后,顿时想起他放到柜子里的那瓶“氯化碘”,他赶紧翻箱倒柜,找出了那瓶棕色液体,认真地进行了化学分析,分析结果使他激动又痛心。原来,那瓶棕色液体不含有氯,也不含有碘,更不是他猜测的“氯化碘”,其成分正是波拉德发现的新元素溴。如果李比希采取严格的科学态度,认真分析那瓶棕色液体,那么发现元素溴的不是波拉德,而将会是李比希。 李比希失之交臂,他懊悔极了,恨自己粗心大意,恨自己进行了大半辈子的化学研究,却缺乏严格的科学态度。他为了警诫自己,特别把那瓶棕色液体放在原来的柜子里,并把柜子搬到大厅中,在上面贴上一个工整的字条:“错误之柜”。而且,他还把瓶子上的标签揭了下来,用镜框装上,挂在床头,不但自己看,还给朋友们看。李比希接受教训后,善于在异常现象发现问题,又能通过实验找出解决问题的途径,所以成为化学史上的巨人。

李比希用“错误之柜”警惕自己,教育学生。李比希逝世后,学术界对他十分怀念。人们把吉森大学李比希工作过的地方,改为李比希纪念馆,把李比希看成有机化学、生物化学和农业化学的开路人。



11
实验
[size=1em]编辑

后来被称为“李比希实验室”,由于这一实验室培养出一大批第一流的化学人才,所以成了全世界化学化工工作者注目和向往的地方。李比希实验室科研和教学的风格,很快传遗了全世界。李比希还制造和改进了许多化学仪器,如有机分析燃烧仪。李比希冷凝球、玻璃冷凝管等等。这些仪器方便耐用,所以德国的仪器制造商纷纷大量仿制,向外国输出。

为了发展化学教学,李比希还用新的体系编制了化学教学大纲。他认为,化学不仅是一门实验科学,同时直接关系到国家的命运和人民的生活。所以他认为:“学习化学的真正中心,不在于讲课,而在于实际工作。”他要求他的学生既会定性分析,又会定量分析,然后自行制备各种有机化合物。这样就可以培养出较强的实际工作能力。

李比希一生为化学事业培养了一大批第一流的化学家,俄国的齐宁、法国的日拉尔、英国的威廉姆逊、德国的霍夫曼凯库勒,此外象富兰克兰、武兹等,都是李比希的学生。

李比希对无机化学、有机化学、生物化学、农业化学都做出了卓越的贡献。他发明和改进了有机分析的方法,准确地分析过大量的有机化合物,合成过氯仿(CHCl3)、三氯乙醛(CCl3CHO)和多种有机酸,他还曾与他人合作,提出了化合物基团的概念以及多元酸的理论。李比希开创了农业化学的研究提出植物需要氮、磷,钾等基本元素,研究了提高土壤肥力的问题,因此,他被农学界称为“农业化学之父”。







回复 支持 反对

使用道具 举报

6423

主题

4万

帖子

10万

积分

超级版主

Rank: 8Rank: 8

积分
102445
10#
 楼主| 发表于 2021-6-3 01:51:50 | 只看该作者
Marx’s Ecological Notebooks

2016, Volume 67, Issue 09 (February)by Kohei Saito
(Feb 01, 2016)https://monthlyreview.org/2016/02/01/marxs-ecological-notebooks/
        Places: England  Europe  Germany  Global


Kohei Saito recently received a PhD in philosophy from Humboldt University, Berlin. In 2015 he was a guest researcher at the Berlin-Brandenburg Academy of Sciences, where he helped edit Marx’s notebooks on natural science.


Karl Marx has long been criticized for his so-called ecological “Prometheanism”—an extreme commitment to industrialism, irrespective of natural limits. This view, supported even by a number of Marxists, such as Ted Benton and Michael Löwy, has become increasingly hard to accept after a series of careful and stimulating analyses of the ecological dimensions of Marx’s thought, elaborated in Monthly Review and elsewhere. The Prometheanism debate is not a mere philological issue, but a highly practical one, as capitalism faces environmental crises on a global scale, without any concrete solutions. Any such solutions will likely come from the various ecological movements emerging worldwide, some of which explicitly question the capitalist mode of production. Now more than ever, therefore, the rediscovery of a Marxian ecology is of great importance to the development of new forms of left strategy and struggle against global capitalism.

Yet there is hardly unambiguous agreement among leftists about the extent to which Marx’s critique can provide a theoretical basis for these new ecological struggles. “First-stage ecosocialists,” in John Bellamy Foster’s categorization, such as André Gorz, James O’Connor, and Alain Lipietz, recognize Marx’s contributions on ecological issues to some extent, but at the same time argue that his nineteenth-century analyses are too incomplete and dated to be of real relevance today. In contrast, “second-stage ecosocialists,” such as Foster and Paul Burkett, emphasize the contemporary methodological significance of Marx’s ecological critique of capitalism, based on his theories of value and reification.[size=0.5em]1
[size=1em]This article will take a different approach, and investigate Marx’s natural-scientific notebooks, especially those of 1868, which will be published for the first time in volume four, section eighteen of the new Marx-Engels-Gesamtausgabe(MEGA).[size=0.5em]2 As Burkett and Foster rightly emphasize, Marx’s notebooks allow us to see clearly his interests and preoccupations before and after the publication of the first volume of Capital in 1867, and the directions he might have taken through his intensive research into disciplines such as biology, chemistry, geology, and mineralogy, much of which he was not able fully to integrate into Capital.[size=0.5em]3 While the grand project of Capital would remain unfinished, in the final fifteen years of his life Marx filled an enormous number of notebooks with fragments and excerpts. In fact, a third of his notebooks date to this period, and almost one half of them deal with natural sciences. The intensity and scope of Marx’s scientific studies is astonishing. Thus it is simply invalid to conclude, as some critics have, that Marx’s powerful ecological arguments in Capital and other writings were mere asides, while ignoring the mass of contrary evidence to be found in his late natural-scientific researches.
[size=1em]Looking at the notebooks after 1868, one can immediately recognize the rapid expansion of Marx’s ecological interests. I will argue that Marx’s critique of political economy, if completed, would have put a much stronger emphasis on the disturbance of the “metabolic interaction” (Stoffwechsel) between humanity and nature as the fundamental contradiction within capitalism. Furthermore, the deepening of Marx’s ecological interests serves to complicate Liebig’s critique of the modern “robbery system,” which I discuss below. The centrality of ecology to Marx’s late writings remained hard to discern for a long time because he was never able to complete his magnum opus. The newly published notebooks promise to help us comprehend these hidden but vital aspects of Marx’s lifelong project.
Marx and Liebig in Different Editions of Capital
[size=1em]It is by now a well-known fact that Marx’s critique of the irrationality of modern agriculture in Capital is deeply informed by Justus von Liebig’s Agricultural Chemistry and James F. W. Johnston’s Notes on North America, works which argue that neglect of the natural laws of soils inevitably leads to their exhaustion.[size=0.5em]4 After intensive study of these books in 1865–66, Marx integrated Liebig’s central ideas into volume one of Capital. In a section called “Modern Industry and Agriculture,” Marx wrote that the capitalist mode of production
collects the population together in great centres, and causes the urban population to achieve an ever-growing preponderance…. [It] disturbs the metabolic interaction between man and the earth, i.e., it prevents the return to the soil of its constituent elements consumed by man in the form of food and clothing; hence it hinders the operation of the eternal natural condition for the lasting fertility of the soil. Thus it destroys at the same time the physical health of the urban worker, and the intellectual life of the rural worker.[size=0.5em]5
[size=1em]This justly famous passage has become the cornerstone of recent “metabolic rift” analyses.[size=0.5em]6In a footnote to this section, Marx openly expresses his debt to the seventh edition of Liebig’s Agricultural Chemistry, published in 1862: “To have developed from the point of view of natural science the negative, i.e., destructive side of modern agriculture, is one of Liebig’s immortal merits.” Such remarks are the reason the “metabolic rift” approach has focused on Liebig’s critique of modern agriculture as an intellectual source for Marx’s ecological critique of capitalism.
[size=1em]However, it is hardly known that in the first German edition of Capital (1867), which is unfortunately not available in English, Marx went on to state that Liebig’s “brief comments on the history of agriculture, although not free from gross errors, contain more flashes of insight than all the works of modern political economists put together [mehr Lichtblicke als die Schriften sämmtlicher modernen politischen Oekonomen zusammengenommen].”[size=0.5em]7 A careful reader may immediately notice a difference between this version and later editions, although it was pointed out only recently by a German MEGA editor, Carl-Erich Vollgraf.[size=0.5em]8 Marx modified this sentence in the second edition of Capital published in 1872–73. Consequently, we usually only read: “His brief comments…although not free from gross errors, contain flashes of insight.”[size=0.5em]9Marx has deleted the statement that Liebig was more insightful “than all the works of modern political economists put together.” Why did Marx soften his endorsement of Liebig’s contributions relative to classical political economy?
[size=1em]One might argue that this elimination is only a trivial change, meant to clarify Liebig’s original contributions in the field of agricultural chemistry and separate them from political economy, where the great chemist made some “gross errors.” Also Marx, as these pages show, was very enthusiastic about one particular political economist’s understanding of the soil problem, namely James Anderson, who, unlike other classical political economists, examined issues of the destruction of the soil. It was Liebig’s own recognition of “the destructive side of modern agriculture,” which Marx characterized as “one of Liebig’s immortal merits.” Hence, Marx might have thought that his expression in the first edition of Capital was rather exaggerated.
[size=1em]Nonetheless, it should also be noted that Liebig’s Agricultural Chemistry was eagerly discussed by a number of political economists at the time, precisely because of his alleged contributions to political economy, especially ground-rent theory and population theory.[size=0.5em]10For example, the German economist Wilhelm Roscher recognized the relevance of Liebig’s mineral theory to political economy even before Marx, and added some passages and notes dedicated to Liebig in his fourth edition of National Economy of Agriculture and the Related Branches of Natural Production [Nationalökonomie des Ackerbaues und der verwandten Urproductionen] (1865), in order to integrate Liebig’s new agricultural findings into his own system of political economy. Notably, Roscher praises Liebig in similar terms: “Even if many of Liebig’s historical assertions are highly disputable…even if he misses some important facts of national economy, the name of this great natural scientist will always maintain a place of honor comparable to the name of Alexander Humboldt in the history of national economy as well.”[size=0.5em]11 In fact, it is very likely that Roscher’s book prompted Marx to reread Liebig’s Agricultural Chemistry in 1865–66. Both authors’ similar remarks reflect a widespread opinion about Liebig’s Agricultural Chemistry at the time.
[size=1em]Furthermore, it is reasonable to assume that Marx in the first edition of Capital was intentionally comparing Liebig to those political economists who postulated a trans-historical and linear development of agriculture, whether from more productive to less productive soils (Malthus, Ricardo, and J. S. Mill), or from less productive to more productive (Carey and later Dühring). Liebig’s critique of the “robbery system” of cultivation instead denounces precisely the modern form of agriculture and its decreasing productivity as a result of the irrational and destructive use of the soil. In other words, Liebig’s historicization of modern agriculture provides Marx with a useful natural scientific basis for rejecting abstract and linear treatments of agricultural development.
[size=1em]Yet as seen earlier, Marx somewhat relativizes Liebig’s contribution to political economy between 1867 and 1872–73. Could it be that Marx had doubts about Liebig’s chemistry as well as his economic errors? In this context, close study of Marx’s letters and notebooks helps us comprehend the larger aims and methods of his research after 1868.
Debates on Liebig’s Agricultural Chemistry
[size=1em]Looking at the letters and notebooks from this period, it seems more probable that the change regarding Liebig’s contribution in the second edition represented more than a mere correction. Marx was well aware of the heated debates surrounding Liebig’s Agricultural Chemistry, so after the publication of the first volume of Capital, he thought it necessary to follow up on the validity of Liebig’s theory. In a letter to Engels dated January 3, 1868, Marx asked him to seek some advice from a long-time friend and chemist, Carl Schorlemmer:
I would like to know from Schorlemmer what is the latest and best book (German) on agricultural chemistry. Furthermore, what is the present state of the argument between the mineral-fertilizer people and the nitrogen-fertilizer people? (Since I last looked into the subject, all sorts of new things have appeared in Germany.) Does he know anything about the most recent Germans who have written against Liebig’s soil-exhaustion theory? Does he know about the alluvion theory of Munich agronomist Fraas (Professor at Munich University)? For the chapter on ground rent I shall have to be aware of the latest state of the question, at least to some extent.[size=0.5em]12
[size=1em]Marx’s remarks in this letter clearly indicate his aim at the beginning of 1868 to study books on agriculture. He is not just looking for the recent literature on agriculture in general, but pays particular attention to debates and critiques of Liebig’s Agricultural Chemistry. It is important to note that in the manuscript for volume three of Capital, Marx uncharacteristically points to the importance of Liebig’s analysis while essentially indicating that this needs to be filled-in in the future. That is, this was part of the argument that he was continuing to research—and in such basic areas as “the declining productivity of the soil” related to discussions of the falling rate of profit.[size=0.5em]13
[size=1em]Liebig, often called the “father of organic chemistry,” convincingly demonstrated that the healthy growth of plants requires both organic and inorganic substances, such as nitrogen, phosphoric acid, and potassium. He claimed, against dominant theories centered on humus (an organic component of soil made up of decayed plant and animal matter) or nitrogen, that all necessary substances must be provided in more than a “minimum amount,” a proposition known as Liebig’s “law of the minimum.”[size=0.5em]14 Although Liebig’s insight into the role of inorganic substances remains valid today, two theses derived from it, the theories of mineral fertilization and of soil exhaustion, sparked immediate controversy.
[size=1em]According to Liebig, the amount of inorganic substances in soils remains limited without constant replenishment. It is thus necessary regularly to return to the soil those inorganic substances that plants have absorbed if one is to grow crops sustainably. (These can be returned in either inorganic forms or organic forms, which are converted [mineralized] into inorganic forms.) Liebig calls this necessity the “law of replacement,” and holds that the full replacement of inorganic substances is the fundamental principle of sustainable agriculture. Since nature alone could not provide enough inorganic material when such a large quantity of nutrients was being removed annually, Liebig argued for the use of chemical mineral fertilizer. He maintained that not only the humus theory of Albrecht Daniel Thaer’s Principles of Practical Agriculture, but also the nitrogen theory of John Bennett Lawes and Joseph Henry Gilbert were seriously flawed, because they gave no attention to the limited quantity of available inorganic substances in soil.
[size=1em]Based on his theory, Liebig warned that violations of the law of replacement and consequent soil exhaustion threatened the whole of European civilization. According to Liebig, modern industrialization created a new division of labor between town and countryside, so that foods consumed by the working class in large cities no longer return to and restore the original soils, but instead flow out into the river through water toilets without any further use. In addition, through the commodification of agricultural products and fertilizer (bone and straw), the aim of agriculture diverges from sustainability and becomes the mere maximization of profits, squeezing soil nutrients into crops in the shortest possible period. Disturbed by these facts, Liebig denounced modern agriculture as a “robbery system,” and warned that the disruption of the natural metabolic interaction would ultimately cause the decay of civilization. Shifting from his rather optimistic belief in the early to mid-1850s in the cure-all of chemical fertilization, Liebig’s 1862 edition of Agricultural Chemistry, especially its new introduction, emphasized the destructive aspects of modern agriculture much more fervently.
[size=1em]As Liebig strengthened his critique of this robbery system in 1862 and corrected his earlier optimism, Marx understandably felt a need to review the debate on soil fertility from a new perspective. At the same time, Liebig’s critique of the robbery system and soil exhaustion inspired a number of new arguments among scholars and agronomists. Marx’s letter to Engels makes clear that even after the publication of volume one of Capital, he tried to examine the validity of Liebig’s theory from a more critical perspective.
[size=1em]Notably, various political economists other than Marx and Roscher also joined in this debate. As described by Foster, Henry Charles Carey had already referred to wasteful agricultural production in the United States and claimed that the irresponsible “robbery from the earth” constituted a serious “crime” against future generations.[size=0.5em]15 Liebig was also interested in Carey and cited his work extensively, but Marx may not have been entirely clear about their relationship when he read Agricultural Chemistry in 1865–66. Marx had corresponded with Carey, who had sent him his book on slavery, which contained some of his arguments about soil exhaustion, and Marx studied Carey’s economic works.[size=0.5em]16 However, Carey’s role in the overall soil debate likely became more apparent when Marx encountered Eugen Dühring’s work. Marx started studying Dühring’s books in January 1868, after Louis Kugelmann sent him Dühring’s review of Capital—the first review of the book anywhere—published in December 1867.
[size=1em]Dühring, a lecturer at the University of Berlin, was an enthusiastic supporter of Carey’s economic system. He also integrated Liebig’s theory into his economic analysis as further validation of Carey’s proposal to establish autarchic town-communities in which producers and consumers live in harmony, without wasting plant nutrients and thus without exhausting soils. Dühring maintained that Liebig’s theory of soil exhaustion “builds a pillar on [Carey’s] system,” and claimed that
soil exhaustion, which has already become quite threatening in North America, for example, will…be halted in the long run only through a commercial policy built upon the protection and education of domestic labor. For the harmonious development of the various facilities of one nation…promotes the natural circulation of materials [Kreislauf der Stoffe] and makes it possible for plant nutrients to be returned to the soil from which they have been taken.[size=0.5em]17
[size=1em]In the manuscript for volume three of Capital, Marx envisioned a future society beyond the antagonism between town and country in which “the associated producers rationally regulat[e] their metabolic interchange with nature.” He must have been surprised to learn that Dühring similarly demanded, as the “only countermeasure” against wasteful production, the “conscious regulation of material distribution” by overcoming the division between town and country.[size=0.5em]18 In other words, Marx’s claim, together with Dühring’s, reflects a popular tendency of the “Liebig school” at the time. In subsequent years Marx’s view of Dühring grew more critical, as Dühring began to promote his own system as the only true foundation of social democracy. This likely reinforced Marx’s suspicion of Dühring’s interpretation of soil exhaustion and its advocates, even if he continued to recognize the usefulness of Liebig’s theory. In any case, at the beginning of 1868, the discursive constellation already prompted Marx to study books “against Liebig’s soil-exhaustion theory.”
Liebig’s Malthusianism?
[size=1em]Marx was particularly concerned that Liebig’s warnings about soil exhaustion carried a hint of Malthusianism. They rehabilitated, to borrow Dühring’s expression, “Malthus’s ghost,” as Liebig appeared to provide a new “scientific” version of old Malthusian themes of food scarcity and overpopulation.[size=0.5em]19 As noted above, the general tone of Liebig’s argument shifted from one of optimism in the 1840s up through the mid-1850s to a quite pessimistic one in the late 1850s and 1860s. Sharply critical of British industrial agriculture, he predicted a dark future for European society, full of war and hunger, if the “law of replacement” continued to be ignored:
In a few years, the guano reserves will be depleted, and then no scientific nor, so to speak, theoretical disputes will be necessary to prove the law of nature which demands from man that he cares for the preservation of living conditions.… For their self-preservation, nations will be compelled to slaughter and annihilate each other in never-ending wars in order to restore an equilibrium, and, God forbid, if two years of famine such as 1816 and 1817 succeed each other again, those who survive will see hundreds of thousands perish in the streets.[size=0.5em]20
[size=1em]Liebig’s new pessimism appears quite distinct in this passage. While his view of modern agriculture as a “robbery system” shows its superiority over the widespread ahistorical “law of diminishing returns” of Malthus and Ricardo, his conclusion leaves his relation to Malthusian ideas ambiguous. Indeed, Marx was particularly concerned about Liebig’s references to the Ricardian theory. Liebig in fact personally knew John Stuart Mill and may have been directly influenced by the latter. Ironically, however, as Marx points out, Ricardian rent theory originated not with Ricardo or even with Malthus—and certainly not with John Stuart Mill, as Liebig mistakenly supposes—but with James Anderson, who had given it a historical basis in the degradation of the soil. What worried Marx, then, was the frequent linking in his day of Liebig with Malthus and Ricardo—representing a logic opposed to Marx’s own analysis, and which, in contrast to Malthus and Ricardo, emphasized the historical nature of the soil problem.[size=0.5em]21
[size=1em]The question of Liebig’s Malthusianism may seem like an arcane detail in the larger debate over soil exhaustion, but it is one of the main reasons why his Agricultural Chemistry became so popular in 1862.[size=0.5em]22 For Dühring, this Malthusianism was not so problematic because he believed that Carey’s economic system had already dispelled “Malthus’s ghost,” showing that the development of society made it possible to cultivate better soils.[size=0.5em]23 Of course, Marx could hardly accept this naïve presupposition, as he wrote to Engels in November 1869: “Carey ignores even the most familiar facts.”[size=0.5em]24
[size=1em]Thus in 1868 Marx began reading the work of authors who took a more critical stance toward Liebig’s Agricultural Chemistry. He was already familiar with arguments such as Roscher’s, which held that the robbery system should be criticized from the point of view of “natural science” but could be justified from an “economic” standpoint insofar as it was more profitable.[size=0.5em]25 According to Roscher, it was only necessary to stop the robbery just before it became too expensive to recover the original fertility of the soil—but market prices would take care of that. Adopting Roscher’s arguments, Friedrich Albert Lange, a German philosopher, argued against Dühring’s reception of Liebig and Carey in his J. St. Mill’s Views of the Social Question [J. St. Mills Ansichten über die sociale Frage] published in 1866. Marx read Lange’s book at the beginning of 1868, and it is no coincidence that his notebook focuses on its fourth chapter, where Lange discusses the problems of rent theory and soil exhaustion. Specifically, Marx noted Lange’s observation that Carey and Dühring denounced “trade” with England as a cause of all evils and regarded a “protective tariff” as the ultimate “panacea,” without Lange’s recognizing that “industry” possesses a “centralizing tendency,” which creates not only the division of town and country but also economic inequality.[size=0.5em]26 Similar to Roscher, Lange argued that “despite the natural scientific correctness of Liebig’s theory,” robbery cultivation can be justified from a “national economic” perspective.[size=0.5em]27
[size=1em]Related ideas can be also found in the work of the German economist Julius Au. Marx owned a copy of Au’s Supplementary Fertilizers and their Meaning for National and Private Economy [Hilfsdüngermittel in ihrer volks- und privatwirtschaftlichen Bedeutung] (1869), which he marked up with marginal notes and comments.[size=0.5em]28 Although he recognized the scientific value of Liebig’s mineral theory, Au doubted that the theory of soil exhaustion could be regarded as an “absolute” natural law. It was instead, Au argued, a “relative” theory with little meaning for the economies of Russia, Poland, or Asia Minor, because in these areas agriculture could be sustained, presumably through extensive development, without following the “law of replacement.”[size=0.5em]29 Yet Au seemingly forgot that Liebig’s main concern was Western European countries. Moreover, Au ended up uncritically accepting the price-regulation mechanisms of the market, which he, like Roscher, expected to hinder excessive exploitation of soil power because it would simply cease to be profitable. What remains of Liebig’s theory for Lange and Au is the simple fact that soil could not be improved infinitely. They were, after all, neo-Malthusian supporters of overpopulation theory and the law of diminishing returns.
[size=1em]Reacting to all this, Marx comments “Idiot!” [Asinus!] and writes many incredulous question marks in his copy of Au’s book.[size=0.5em]30 His evaluation of Lange’s books is similarly hostile, as he ironically comments on Lange’s Malthusian explanation of history in his letter to Kugelmann dated July 27, 1870.[size=0.5em]31 In addition, it is safe to assume that Marx was not attracted to the idea of realizing sustainable agriculture through fluctuations in market prices. Since Marx was also unable to support Carey and Dühring, he set out to study the problem of soil exhaustion more intensively in order to articulate a sophisticated critique of the modern robbery system.
[size=1em]To sum up: Marx thought at first that Liebig’s description of the destructive effects of modern agriculture could be used as a powerful argument against Ricardo and Malthus’s abstract law of diminishing returns, but began to question Liebig’s theory after 1868, as the debates over soil exhaustion increasingly took on a Malthusian tone. Marx therefore backed off from his somewhat uncritical and exaggerated claim that Liebig’s analyses “contain more flashes of insight than all the works of modern political economists put together,” in preparation for the more extensive research into the problem that he clearly intended for volumes two and three of Capital.
Marx and Fraas’s Theory of Metabolic Interaction
[size=1em]If Liebig’s Malthusian tendencies constituted a negative reason for Marx’s alteration of the sentence on Liebig in the second edition of Capital, there was also a more positive one: Marx encountered a number of authors who became as important as Liebig to his ecological critique of political economy. Carl Fraas was one of them. In a letter from January 1868, Marx asks Schorlemmer about Fraas, a German agriculturist and professor at the University of Munich. Although Shorlemmer could not offer any specific information about Fraas’s “alluvion theory,” Marx nevertheless began reading several books by Fraas in the following months.
[size=1em]Fraas’s name first appears in Marx’s notebook between December 1867 and January 1868, when he notes the title of Fraas’s 1866 book Agrarian Crises and Their Solutions [Die Ackerbaukrisen und ihre Heilmittel], a polemic against Liebig’s theory of soil exhaustion.[size=0.5em]32 When Marx wrote in a letter to Engels in January 1868 that “since I last looked into the subject, all sorts of new things have appeared in Germany,” he was likely thinking of Fraas’s book.
[size=1em]Just as Fraas’s book was published, his relations with Liebig grew very strained, after Liebig criticized the scientific ignorance of agricultural educators and practical farmers in Munich, where Fraas taught as a professor for many years. In response, Fraas defended the agrarian praxis in Munich, and argued that Liebig’s theory had been oversold and represented a retreat into Malthusian theory—one that ignored various historical forms of agriculture that maintained and even increased productivity without causing soil exhaustion. According to Fraas, Liebig’s pessimism arose from his tacit presupposition that humans must be able to return inorganic substances and thus the soil demanded—if the division between town and country is not to be dissolved—the introduction of artificial fertilizers, which, however, would turn out to be too costly. In contrast, Fraas suggests a more affordable method, using the power of nature itself in order to sustain the fertility of the soil, as represented in his “theory of alluvion.”[size=0.5em]33
[size=1em]In Charles Lyell’s definition, alluvion is “earth, sand, gravel, stones, and other transported matter which has been washed away and thrown down by rivers, floods, or other causes, upon land not permanently submerged beneath the waters of lakes or seas.”[size=0.5em]34 Alluvial materials contain large quantities of the mineral substances vital for plant growth. Consequently, soils developed from regular deposition of such materials—usually adjacent to rivers in valleys—produce rich crops year after year without fertilizer, as in the sandbanks of the Danube, the deltas of the Nile or the Po, or the tongues of land of the Mississippi. The rejuvenating sediments in floodwater are derived from erosion further up the watershed. Hence, the richness of the alluvial soil is a result of the impoverishment of upriver soils, most likely from slopes of hills and mountains. Inspired by these examples in nature, Fraas suggests constructing an “artificial alluvion” by regulating river water through the building of temporary dams over agrarian fields, cheaply and almost eternally providing them with essential minerals. Marx’s notebook confirms that he carefully studied Fraas’s arguments for the practical merits of alluvion in agriculture.[size=0.5em]35
[size=1em]What interested Marx most about Fraas, however, was probably not the theory of alluvion. After reading Fraas eagerly, documenting various passages in his notebooks, Marx writes to Engels in a letter dated March 25, 1868, praising Fraas’s book Climate and the Plant World Over Time [Klima und Pflanzenwelt in der Zeit]:
Very interesting is the book by Fraas (1847): Klima und Pflanzenwelt in der Zeit, eine Geschichte beider [Climate and the Plant World Over Time], namely as proving that climate and flora change in historical times.… He claims that with cultivation—depending on its degree—the “moisture” so beloved by the peasants gets lost (hence also the plants migrate from south to north), and finally steppe formation occurs. The first effect of cultivation is useful, but finally devastating through deforestation, etc.… The conclusion is that cultivation—when it proceeds in natural growth and is not consciously controlled (as a bourgeois he naturally does not reach this point)—leaves deserts behind it, Persia, Mesopotamia, etc., Greece. So once again an unconscious socialist tendency![size=0.5em]36
[size=1em]It might seem surprising that Marx found even “an unconscious socialist tendency” in Fraas’s book, despite Fraas’s harsh critique of Liebig. Climate and the Plant World Over Time elaborated how ancient civilizations, especially ancient Greece—Fraas had spent seven years as an inspector of the court garden and professor of botany at the University of Athens—collapsed after unregulated deforestation caused unsustainable changes in the local environment. As indigenous plants could no longer adapt to the new environment, steppe formation or, in the worst case, desertification set in. (Although Fraas’s interpretation was influential, some would argue today that what occurred was not “desertification” as such, but rather the growth of plants that required less moisture—because so much of the rainfall was lost as runoff instead of infiltrating into soil.)
[size=1em]In our context, it is first of all interesting to note that Fraas emphasized the significance of a “natural climate” for plant growth, because of its great influence on the weathering process of soils. It is therefore not enough simply to analyze the chemical composition of soil alone, because mechanical and chemical reactions in the soil, which are essential for the weathering process, depend heavily on climatic factors such as temperature, humidity, and precipitation. This is why Fraas characterized his own research field and method as “agricultural physics,” in clear contrast to Liebig’s “agricultural chemistry.”[size=0.5em]37 According to Fraas, in certain areas where climatic conditions are more favorable and the soils are adjacent to rivers and flood regularly with water containing sediments, it is possible to produce large amounts of crops without fear of soil exhaustion, as nature automatically fulfills the “law of replacement” through alluvial deposits. This, of course, would apply to only some of the soils in any particular country.
[size=1em]After reading Fraas’s books, Marx grew more interested in such “agricultural physics,” as he told Engels: “We must keep a close watch on the recent and very latest in agriculture. The physical school is pitted against the chemical.[size=0.5em]38 Here it is possible to discern a clear shift in Marx’s interests. In January 1868, Marx was mainly following debates within the “chemical school,” in terms of whether mineral or nitrogen fertilizer was more effective. As he had already studied the issue in 1861, he now thought it necessary to study recent developments “to some extent.” After two and a half months and intensive examination of Fraas’s works, however, Marx grouped both Liebig and Lawes into one and the same “chemical school” and treated Fraas’s theory as an independent “physical” school. Notably, this categorization reflects Fraas’s own judgment, for he complained that both Liebig and Lawes made abstract, one-sided arguments about soil exhaustion by putting too much emphasis on only the chemical component of plant growth.[size=0.5em]39 As a result, Marx came to believe that he “must” study the newest developments in the field of agriculture much more carefully.
[size=1em]Fraas’s uniqueness is also evident in his attention to the human impact on the process of historical climate change. Indeed, Fraas’s book offers one of the earliest studies on the topic, later praised by George Perkins Marsh in Man and Nature (1864).[size=0.5em]40 Drawing on ancient Greek texts, Fraas showed how plant species moved from south to north, or from the plains to the mountains, as local climates gradually grow hotter and dryer. According to Fraas, this climate change results from excessive deforestation demanded by ancient civilizations. Such stories of the disintegration of ancient societies also have obvious relevance for our contemporary situation.
[size=1em]Fraas likewise warned against the excessive use of timber by modern industry, a process already well underway during his time that would have a huge impact on European civilization. Marx’s readings of Fraas introduced him to the problem of Europe’s disappearing forests, as documented in his notebook: “France has now no more than one-twelfth of her earlier forest area, England only 4 big forests among 69 forests; in Italy and the southwestern European peninsula the stand of trees that was also common on the plain in the past can be no longer found even in the mountains.”[size=0.5em]41 Fraas lamented that further technological development would enable the cutting of trees at higher mountain elevations and only accelerate deforestation.
[size=1em]Reading Fraas’s book, Marx came to see a great tension between ecological sustainability and the ever-increasing demand for wood to fuel capitalist production. Marx’s insight into the disturbance of “metabolic interaction” between human and nature in capitalism goes beyond the problem of soil exhaustion in Liebig’s sense and extends to the issue of deforestation. Of course, as the second edition of Capital indicates, this does not mean that Marx abandoned Liebig’s theory. On the contrary, he continued to honor Liebig’s contribution as essential to his critique of modern agriculture. Nonetheless, when Marx wrote of an “unconscious socialist tendency” in Fraas’s work, it is clear that Marx now regarded the rehabilitation of the metabolism between human and nature as a central project of socialism, with a much larger scope than in the first edition of volume one of Capital.
[size=1em]Marx’s interest in deforestation was not limited to reading Fraas. In the beginning of 1868, he also read John D. Tuckett’s History of the Past and Present State of the Labouring Population, noting the numbers of important pages. On one of those few pages Marx recorded, Tuckett argues:
the indolence of our forefathers appears a subject of regret, in neglecting the raising of trees as well as in many instances causing the destruction of the forests without sufficiently replacing them with young plants. This general waste appears to have been greatest just before the use of sea coal [for smelting iron] was discovered when the consumption for the use of forging Iron, was so great that it appeared as if it would sweep down all the timber and woods in the country.… However at the present day the plantations of trees, not only add to the usefulness, but also tend to the embellishment of the country, and produce screens to break the rapid currants of the winds.… The great advantage in planting a large body of wood in a naked country is not at first perceived. Because there is nothing to resist the cold winds, cattle fed thereon are stunted in growth and the vegetation has often the appearance of being scorched with fire, or beat with a stick. Moreover by giving warmth and comfort to cattle, half the fodder will satisfy them.[size=0.5em]42
[size=1em]Forests play an important economic role in agriculture and stock farming, and this is clearly what interested Marx in 1868.
[size=1em]Although Marx does not directly mention either Fraas’s or Tuckett’s work after 1868, the influence of their ideas is clearly visible in the second manuscript for volume two of Capital, written between 1868 and 1870. Marx had already noted in the manuscript for volume three that deforestation would not be sustainable under the system of private property, even if it could be more or less sustainable when conducted under state property.[size=0.5em]43 After 1868, Marx paid greater attention to the problem of the modern robbery system, which he now expanded from crop production to include deforestation. In this vein, Marx cites Friedrich Kirchhof’s Manual of Agricultural Business Operations [Handbuch der landwirthschaftlichen Betriebslehre] (1852), in support of the incompatibility between the logic of capital and the material characteristics of forestation.[size=0.5em]44 He points out that the long time required for forestation imposes a natural limit, compelling capital to try to shorten the cycle of deforestation and regrowth as much as possible. In the manuscript to volume two of Capital, Marx comments on a passage from Kirchhof’s book: “The development of culture and of industry in general has evinced itself in such energetic destruction of forest that everything done by it conversely for their preservation and restoration appears infinitesimal.”[size=0.5em]45 Marx is certainly conscious of the danger that this deforestation will cause not only a wood shortage but also a changing climate, which is tied to a more existential crisis of human civilization.
[size=1em]A comparison with the writing of the young Marx illustrates this dramatic development of his ecological thought. In the Communist Manifesto, Marx and Engels write of the historic changes brought by the power of capital:
The bourgeoisie, during its rule of scarce one hundred years, has created more massive and more colossal productive forces than have all preceding generations together. Subjection of Nature’s forces to man, machinery, application of chemistry to industry and agriculture, steam-navigation, railways, electric telegraphs, clearing of whole continents for cultivation, canalization of rivers, whole populations conjured out of the ground.[size=0.5em]46
[size=1em]Michael Löwy has criticized this passage as a manifestation of Marx and Engels’s naïve attitude toward modernization and ignorance of ecological destruction under capitalist development: “Paying homage to the bourgeoisie for its unprecedented ability to develop the productive forces,” he writes, “Marx and Engels unreservedly celebrated the ‘Subjection of Nature’s forces to man’ and the ‘clearing of whole continents for cultivation’ by modern bourgeois production.”[size=0.5em]47 Löwy’s reading of Marx’s alleged “Prometheanism” might seem hard to refute here, although Foster provides another view.[size=0.5em]48 However, Löwy’s criticism, even if his interpretation accurately reflects Marx’s thinking at the time, can hardly be generalized across Marx’s entire career, since his critique of capitalism became steadily more ecological with each passing year. As seen above, the evolution of his thought subsequent to volume one of Capital shows that in his later years, Marx became seriously interested in the problem of deforestation, and it is highly doubtful that the late Marx would praise mass deforestation in the name of progress, without regard to the conscious and sustainable regulation of the metabolic interaction between humanity and nature.
The Further Scope of Marx’s Ecological Critique
[size=1em]Marx’s ecological interests in this period also extended to stock farming. In 1865–66, he had already read Léonce de Lavergne’s Rural Economy of England, Scotland, and Ireland, in which the French agricultural economist argued for the superiority of English agriculture. Lavergne offered as an example the English breeding process developed by Robert Bakewell, with its “system of selection,” enabling sheep to grow faster and provide more meat, with only the bone mass necessary for their survival.[size=0.5em]49 Marx’s reaction in his notebook to this “improvement” is suggestive: “Characterized by precocity, in entirety sickliness, want of bone, a lot of development of fat and flesh etc. All these are artificial products. Disgusting!”[size=0.5em]50 Such remarks belie any image of Marx as an uncritical supporter of modern technological advances.
[size=1em]Since the beginning of the nineteenth century, Bakewell’s “New Leicester” sheep had been brought into Ireland, where they were bred with indigenous sheep to yield a new breed, Roscommon, meant to increase Ireland’s agricultural productivity.[size=0.5em]51 Marx was fully aware of this artificial modification of regional ecosystems for the purposes of capital accumulation, and rejected it despite its apparent “improvement” of productivity: the health and well-being of animals were being subordinated to the utility of capital. Thus Marx made clear in 1865 that this kind of “progress” was really no progress at all, because it could only be achieved by annihilating the sustainable metabolic interaction between humans and nature.
[size=1em]When Marx returned to the topic of capitalist stock farming in the second manuscript for volume two of Capital, he found it unsustainable for the same reason that marked capitalist forestation: The time of production is often simply too long for capital. Here Marx refers to William Walter Good’s Political, Agricultural and Commercial Fallacies (1866):
For this reason, remembering that farming is governed by the principles of political economy, the calves which used to come south from the dairying counties for rearing, are now largely sacrificed at times at a week and ten days old, in the shambles of Birmingham, Manchester, Liverpool, and other large neighboring towns.… What these little men now say, in reply to recommendations to rear, is, “We know very well it would pay to rear on milk, but it would first require us to put our hands in our purse, which we cannot do, and then we should have to wait a long time for a return, instead of getting it at once by dairying.”[size=0.5em]52
[size=1em]No matter how fast the growth of cattle becomes, thanks to Bakewell and other breeders, it only shortens the time of premature slaughter in favor of a shorter turnover for capital. According to Marx, this too does not count as “development” of productive forces, precisely because it can only take place by sacrificing sustainability for the sake of short-term profit.
[size=1em]All these are just examples found in the notebooks of 1868. Marx at the time was also intrigued by William Stanley Jevons’s Coal Question (1865), whose warning about the coming exhaustion of England’s coal supply provoked intense discussion in the Parliament.[size=0.5em]53 Without doubt, Marx was studying the books mentioned above as he prepared the manuscripts of Capital, and continued to do so into the 1870s and 1880s. So it is quite reasonable to conclude that Marx planned to use these new empirical materials to elaborate on issues such as the turnover of capital, rent theory, and the profit rate. In one passage, Marx actually writes that premature slaughter will ultimately cause “big damages” to agricultural production.[size=0.5em]54 Or, as Marx discusses in another section of the manuscript of 1867–68, the exhaustion of soils or mines could also reach such an extent that the “diminishing natural condition of productivity” in agriculture and extractive industry could no longer be counterbalanced by increasing labor productivity.[size=0.5em]55
[size=1em]Not surprisingly, Marx’s calculations of profit rates in the manuscript include those cases where profit rates sink due to price increases in the “floating” parts of constant capital, suggesting that the law of the falling profit rate should not be treated as a mere mathematical formula. Its real dynamic is tightly linked to the material components of capital and cannot be treated independently of them.[size=0.5em]56 In other words, the valorization and accumulation of capital is not an abstract movement of value; capital is necessarily incarnated in material components, inevitably taking on an “organic composition”—a term taken from Liebig’s Agricultural Chemistry—constrained by concrete material elements of the labor process. Despite its elasticity, this organic structure of capital cannot be arbitrarily modified, or made to diverge too far from the material character of each natural element of production. Capital ultimately cannot ignore the natural world.
[size=1em]This does not mean that capitalism will inevitably collapse one day. Fully exploiting the material elasticity, capital always tries to overcome limitations through scientific and technological innovation. Capitalism’s potential for adaptation is so great that it can likely survive as a dominant social system until most parts of the earth become unsuitable for human habitation.[size=0.5em]57 As Marx’s notebooks on natural science document, he was particularly interested in comprehending the rifts in the process of metabolic interaction between humans and nature that result from endless transformations of the material world for the sake of the efficient valorization of capital. These metabolic rifts are all the more disastrous because they erode the material conditions for “sustainable human development.”[size=0.5em]58
[size=1em]Marx understood these rifts as a manifestation of the fundamental contradictions of capitalism, and thought it necessary to study them carefully as part of the building of a radical socialist movement. As shown in this article, Marx was well aware that the ecological critique of capitalism was not completed by Liebig’s theory, and tried to develop and extend it by drawing on new research from diverse areas of ecology, agriculture, and botany. Marx’s economic and ecological theory is not outdated at all, but remains fully open to new possibilities for integrating natural scientific knowledge with the critique of contemporary capitalism.
Notes
  • See John Bellamy Foster, preface to the new edition of Paul Burkett, Marx and Nature (Chicago: Haymarket, 2014).
  • Funding and support for the MEGA project has now been extended for the next 15 years. This article is based on my research as a visiting scholar at the Berlin-Brandenburg Academy of Sciences in 2015. I am especially thankful to Gerald Hubmann, who supported my project from the beginning.
  • Paul Burkett and John Bellamy Foster, “The Podolinsky Myth,” Historical Materialism 16, no. 1 (2008): 115–61.
  • Foster, Marx’s Ecology (New York: Monthly Review Press, 2000), chapter 4; Kohei Saito, “The Emergence of Marx’s Critique of Modern Agriculture,” Monthly Review 66, no. 5 (October 2014): 25–46.
  • Karl Marx and Frederick Engels, Marx-Engels-Gesamtausgabe (MEGA) II, vol. 6 (Berlin: De Gruyter, 1975), 409.
  • John Bellamy Foster, Brett Clark, and Richard York, The Ecological Rift (New York: Monthly Review Press, 2010), 7.
  • MEGA II, vol. 5, 410.
  • Carl-Erich Vollgraf, Introduction to MEGA II, vol. 4.3, 461. It is important, however, to note that Marx had said the same thing in a letter to Engels on February 13, 1866. See Karl Marx and Frederick Engels, Collected Works (New York: International Publishers, 1975), vol. 42, 227. There he wrote, “I had to plough through the new agricultural chemistry in Germany, in particular Liebig and Schönbein, which is more important for this matter than all the economists put together.”
  • Karl Marx, Capital, vol. 1 (London: Penguin, 1976), 638; emphasis added.
  • Liebig’s introduction includes a section called “National Economy and Agriculture”; Marx begins his excerpts with this section, then returns to the beginning of introduction.
  • Wilhelm Roscher, System der Volkswirthschaft, 4th ed., vol. 2 (Stuttgart: Cotta’scher, 1865), 66.
  • Karl Marx and Friederick Engels, Collected Works, vol. 42, 507–8.
  • See especially Karl Marx, Capital, vol. 3 (London: Penguin, 1981), 878.
  • For an introductory discussion of Liebig’s theory, see William H. Brock, Justus von Liebig: The Chemical Gatekeeper (Cambridge: Cambridge University Press, 1997), chapter 6.
  • Foster, Marx’s Ecology, 153.
  • Michael Perelman, “The Comparative Sociology of Environmental Economics in the Works of Henry Carey and Karl Marx,” History of Economics Review 36 (2002): 85–110.
  • Eugen Dühring, Carey’s Umwälzung der Volkswirthschaftslehre und Socialwissenschaft (Munich: Fleischmann, 1865), xiii.
  • Eugen Dühring, Kritische Grundlegung der Volkswirthschaftslehre (Berlin: Eichhoff, 1866), 230.
  • Dühring, Carey’s Umwälzung, 67. Though Dühring does not use this expression to characterize Liebig’s theory, Karl Arnd claims that it is haunted by a “ghost of soil exhaustion.” See Karl Arnd, Justus von Liebig’s Agrikulturchemie und sein Gespenst der Bodenerschöpfung (Frankfurt am Main: Brönner, 1864).
  • Liebig, Einleitung in die Naturgesetze des Feldbaues (Braunschweig: Friedrich Vieweg, 1862), 125.
  • On the importance of Anderson to Marx’s whole argument see Foster, Marx’s Ecology, 142–47.
  • Liebig intentionally wrote in provocative terms in hopes of restoring his professional fame, and in that sense the seventh edition was quite successful. See Mark R. Finlay, “The Rehabilitation of an Agricultural Chemist: Justus von Liebig and the Seventh Edition,” Ambix 38, no. 3 (1991): 155–66.
  • Dühring, Carey’s Umwälzung, 67.
  • Marx and Engels, Collected Works, vol. 43, 384.
  • Roscher, Nationalökonomie des Ackerbaues, 65.
  • Marx-Engels Archive (MEA), International Institute of Social History, Sign. B 107, 31–32. Albert Friedrich Lange, J. St. Mill’s Ansichten über die sociale Frage und die angebliche Umwälzung der Socialwissenschaft durch Carey (Duisburg: Falk and Lange, 1866), 197.
  • Ibid., 203.
  • MEGA IV, vol. 32, 42.
  • Julius Au, Hilfsdüngermittel in ihrer volks- und privatwirtschaftlichen Bedeutung (Heidelberg: Verlagsbuchhandlung von Fr. Bassermann, 1869), 179.
  • MEGA IV, vol. 32, 42.
  • Marx and Engels, Collected Works, vol. 43, 527.
  • MEA, Sign. B 107, 13.
  • Carl Fraas, Die Ackerbaukrisen und ihre Heilmittel (Leipzig: Brockhaus, 1866), 151.
  • Charles Lyell, Principles of Geology, vol. 3 (London: John Murray, 1832), 61.
  • MEA, Sign. B 107, 94; Carl Fraas, Die Natur der Landwirthschaft, vol. 1 (München: Cotta’sche, 1857) 17.
  • Marx and Engels, Collected Works, vol. 42, 559.
  • Fraas, Natur der Landwirthschaft, vol. 1, 357.
  • Marx and Engels, Collected Works, vol. 42, 559.
  • Fraas, Die Ackerbaukrisen und ihre Heilmittel, 141.
  • George Perkins Marsh, Man and Nature (Seattle: University of Washington Press, 2003), 14.
  • MEA, Sign. B 112, 45. Carl Fraas, Klima und Pflanzenwelt in der Zeit: Ein Beitrag zur Geschichte beider (Landshut: J. G. Wölfle, 1847), 7.
  • MEA, Sign. B 111, 1. John Devell Tuckett, A History of the Past and Present State of the Labouring Population (London: Longman, Brown, Green and Longmans, 1846), vol. 2, 402.
  • MEGA II, vol. 4.2, 670.
  • Friedrich Kirchhof, Handbuch der landwirthschaftlichen Betriebslehre (Dessau: Moriz Ratz, 1852). Marx owned a copy of this book (MEGA IV, vol. 32, 673).
  • MEGA II, vol. 11, 203; Karl Marx, Capital, vol. 2 (London: Penguin, 1978), 322.
  • Marx and Engels, Collected Works, vol. 6, 489.
  • Michael Löwy, “Globalization and Internationalism: How Up-to-date is the Communist Manifesto?” Monthly Review 50, no. 6 (November 1998): 20.
  • John Bellamy Foster, The Ecological Revolution(New York: Monthly Review Press, 2009), 213–32.
  • Léonce de Lavergne, Rural Economy of England, Scotland, and Ireland (Edinburgh: William Blackwood, 1855), 19–20, 37–39.
  • MEA, Sign. B 106, 209; William Walter Good, Political, Agricultural and Commerical Fallacies (London: Edward Stanford, 1866), 11–12.
  • Janet Vorwald Dohner, ed., The Encyclopedia of Historic and Endangered Livestock and Poultry Breeds (New Haven, CT: Yale University Press, 2001), 121.
  • MEGA II, vol. 11, 188.
  • MEA, Sign. B 128, 2.
  • MEGA II, vol. 11, 187.
  • MEGA II, vol. 4.3, 80.
  • For a more mathematical treatment of the law, see Michael Heinrich, An Introduction to the Three Volumes of Karl Marx’s Capital (New York: Monthly Review Press, 2012), chapter 7.
  • Burkett, Marx and Nature, 192.
  • John Bellamy Foster, “The Great Capitalist Climacteric,” Monthly Review 67, no. 6 (November 2015): 9.


回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

QQ| Archiver|手机版|小黑屋|测试| 主人公论坛  

Copyright © 2001-2013 Comsenz Inc.   All Rights Reserved.

Powered by Discuz! X3.2( 京ICP备14052571号-1 )

快速回复 返回顶部 返回列表